Keras 是一个深度学习库,它封装了高效的数学运算库 Theano 和 TensorFlow。 在这篇文章中,你将会了解到如何使用 Keras 开发和评估神经网络模型来解决回归问题。...4.调整神经网络拓扑 对于神经网络模型而言,可以优化的方面有很多。 可能效果最明显的优化之处是网络本身的结构,包括层数和每层神经元的数量。 在本节中,我们将评估另外两个网络拓扑,进一步提高模型的性能。...这两个结构分别是层数更深和层宽更宽的网络拓扑结构。 4.1。评估层数更深的网络拓扑 一种改善神经网络性能的方法是增加更多层次。这可能允许模型提取和重新组合数据中蕴含的高阶特性。...评估层宽更宽的网络拓扑 另一种提高模型表现能力的方法是建立层宽更宽的网络。 在本节中,我们将评估保持浅层网络架构的效果,但将隐藏层中的神经元数量增加近一倍。...该结果证明了在开发神经网络模型时进行实证检验的重要性。 概要 在这篇文章中,你了解了用于建模回归问题的 Keras 深度学习库用法。
今天和大家分享一个深度学习中的基础概念:嵌入。关于嵌入提出几个问题,读者朋友们,你们可以先思考下。然后带着这些问题,点击阅读原文,查看官方解答。 1、为什么要有嵌入? 2、什么是嵌入?...3、如何得到嵌入向量? 4、 如何可视化展示嵌入向量? 5、嵌入向量的实际应用有哪些? 一个单词集合,这些属于离散的非数值型对象,数值计算的基本要求是数值型,所以需要将他们映射为实数向量。...嵌入是将离散对象数值化的过程。...嵌入向量,google 开源的 word2vec 模型做了这件事,现在 TensorFlow 中调用 API 几行代码便可以实现: word_embeddings = tf.get_variable(“...嵌入可以通过很多网络类型进行训练,并具有各种损失函数和数据集。例如,对于大型句子语料库,可以使用递归神经网络根据上一个字词预测下一个字词,还可以训练两个网络来进行多语言翻译。
Keras库提供了一种在训练深度学习模型时计算并报告一套标准度量的方法。 除了提供分类和回归问题的标准度量外,Keras还允许在训练深度学习模型时,定义和报告你自定义的度量。...如果你想要跟踪在训练过程中更好地捕捉模型技能的性能度量,这一点尤其有用。 在本教程中,你将学到在Keras训练深度学习模型时,如何使用内置度量以及如何定义和使用自己的度量。...在该示例、其他的损失函数示例和度量中,这个方法是在后端使用标准数学函数来计算兴趣度量。.../blob/master/keras/losses.py 总结 在本教程中,你已经学会如何在训练深度学习模型时使用Keras度量。...具体来说,你学到了: Keras度量如何原理,以及如何配置模型以在训练期间报告度量。 如何使用Keras内置的分类和回归度量。 如何有效地定义和报告自定义度量,同时训练的深度学习模型。
通过观察神经网络和深度学习模型在训练期间的表现,你可以得知很多有用的信息。...Keras是Python中强大的库,为创建深度学习模型提供了一个简单的接口,并包装了更为技术性的TensorFlow和Theano后端。...在这篇文章中,你将发现在训练时如何使用Python中的Keras对深入学习模型的性能进行评估和可视化。 让我们开始吧。...在Keras中访问模型训练的历史记录 Keras提供了在训练深度学习模型时记录回调的功能。 训练所有深度学习模型时都会使用历史记录回调,这种回调函数被记为系统默认的回调函数。...可视化Keras的模型训练历史 我们可以用收集的历史数据创建图。 在下面的例子中,我们创建了一个小型网络来建模Pima印第安人糖尿病二分类问题。这是一个可从UCI机器学习存储库获取的小型数据集。
选自MiniMaxir 作者:Max Woolf 机器之心编译 参与:Jane W、吴攀 Keras 是由 François Chollet 维护的深度学习高级开源框架,它的底层基于构建生产级质量的深度学习模型所需的大量设置和矩阵代数...CNTK v2.0 还有一个关键特性:兼容 Keras。就在上周,对 CNTK 后端的支持被合并到官方的 Keras 资源库(repository)中。...在云端进行深度学习 在云端设置基于 GPU 的深度学习实例令人惊讶地被忽视了。...要使用 GCE,你必须从一个空白的 Linux 实例中设置深度学习的驱动和框架。...基准方法 Keras 的官方案例(https://github.com/fchollet/keras/tree/master/examples)非常全面,涉及多种现实中的深度学习问题,并能完美地模拟 Keras
在百度实际上就是做一些应用深度学习到搜索系统中的工作,也参与了Paddlepaddle开发,周一的时候于洋已经介绍了Paddlepaddle的一些情况,我和于洋认识好久了。...从我的角度和我的感觉来说,是的,应用深度学习的门槛是在降低,而且是在非常迅速的在降低。但是随着深度学习的进一步应用,可能会形成一些新的门槛。...那么随着深度学习的发展,其实已经取代了很多的专家,大家可能没有很意识到,我这里就讲几个方面:首先就是机器视觉方面的一些专家,在深度学习出现以前,可能大量的机器视觉的研究人员,他们想方设法都是在设计各种各样的特征...所以如何使用模型来对数据做Debug,发现数据中的偏差,能够纠正数据,这可能是一个新的门槛,也可能是大家新的努力的方向。 2、针对不同的计算平台,优化模型。...在分享的开始,你提到了AI泡沫和几年后众多深度学习的人才找工作的可能性。对于那些想涉足深度学习的学生和企业,您有什么好的建议吗?
无论是推荐引擎、语音助手还是语言翻译器,这些系统的背后都可能运用了向量嵌入技术。 机器学习算法,与多数软件算法一样,依赖于数字信息进行处理。...因此,这种简单的像素值矩阵通常作为学习更稳健嵌入的起点。 卷积神经网络(CNN)是一种常用于视觉数据的深度学习架构,它能够将图像转换为更为抽象和鲁棒的嵌入表示。...在CNN中,卷积层通过在输入图像上滑动感受野来应用卷积操作,而下采样层则负责减少数据的空间维度,同时增加对图像位移的不变性。这个过程在网络中逐层进行,每一层都在前一层的基础上进一步提取和抽象特征。...最终,网络的全连接层输出一个固定大小的向量,这个向量就是图像的嵌入表示。 学习CNN模型的权重是一个监督学习过程,需要大量的标记图像。...无论是在直接的相似性度量还是在复杂的模型内部处理中,向量嵌入都证明了其作为数据科学和机器学习领域中不可或缺的工具。
库; TensorFlow Lite,一个轻量级库,用于在移动和嵌入式设备上部署模型; TensorFlow Extended,是一个端到端平台,用于在大型生产环境中准备数据、培训、验证和部署模型。...只需要使用一行代码就可以构建Keras神经网络中的一层,如果利用循环结构,则可以进一步减少代码量。...在拥有GPU的计算机上,TensorFlow.js可以非常快速地在浏览器中运行。 TensorFlow Lite是一个用于移动设备的开源深度学习框架。...深度学习与迁移学习 PyTorch和TensorFlow都支持深度学习和迁移学习。迁移学习(有时称为自定义机器学习)可以从预先训练好的神经网络模型开始,只需为你的数据定制最终层即可。...在某些特定的情况下,可能某个框架优于另一个——至少在当前版本是如此。你可能还会发现,学习其中某一个更为容易,原因可能是框架中的某些基本功能,也有可能是教程的质量。 【END】
JavaScript库; TensorFlow Lite,一个轻量级库,用于在移动和嵌入式设备上部署模型; TensorFlow Extended,是一个端到端平台,用于在大型生产环境中准备数据、培训...只需要使用一行代码就可以构建 Keras 神经网络中的一层,如果利用循环结构,则可以进一步减少代码量。...在拥有 GPU 的计算机上,TensorFlow.js 可以非常快速地在浏览器中运行。 TensorFlow Lite 是一个用于移动设备的开源深度学习框架。...深度学习与迁移学习 PyTorch 和 TensorFlow 都支持深度学习和迁移学习。迁移学习(有时称为自定义机器学习)可以从预先训练好的神经网络模型开始,只需为你的数据定制最终层即可。...在某些特定的情况下,可能某个框架优于另一个——至少在当前版本是如此。你可能还会发现,学习其中某一个更为容易,原因可能是框架中的某些基本功能,也有可能是教程的质量。
解决方案是将玩家的数量设置为零。 在深度学习技术的最新突破中,有很多可以理解的东西。DeepMind利用了深度学习层,结合了更多经典的强化学习方法来达到一种艺术形式。...AlphaGo Zero是DeepMind的自动操作系统的最新化身。有人可能会认为,在围棋中击败人类世界冠军是很难的。...人类通过隐喻和故事来学习语言。由于无法表达更复杂的复合概念,围棋中的人类语言可能是低效的。AlphaGo Zero似乎能够做到的是,以一种同时满足多个目标的方式来执行它的动作。...在像围棋这样的深度学习中,你不能在纸上取得胜利,你必须要实际操作才能知道谁赢了。简而言之,无论一个简单的想法是什么,你都不会体会到它到底有多好,除非你去实际运行它。...一篇叫做“深度学习中的奇怪循环(The Strange Loop in Deep Learning)”的文章提到了很多关于深度学习的最新进展,比如梯形网络和GANs,它们利用基于循环的方法来提高识别和生成能力
TensorFlow 中的 tf.keras 和 Keras 有什么区别?我该用哪一个训练神经网络?在本文中,作者给出的答案是:你应该在以后所有的深度学习项目和实验中都使用 tf.keras。...我在深度学习博客中看到了一些有关 TensorFlow 2.0 的教程,但是对于刚刚提到的那些困惑,我不知道该从何处着手去解决。你能给我一些启示吗?...当时没有太多的深度学习库可用——那时候比较流行的库是 Torch、Theano 和 Caffe。这些库的问题是,用这些库就像在实验的时候用汇编或者 C++编程一样——乏味、耗时、效率低下。...你可以使用 MySQL,PostgreSQL 或者 SQL Server 作为你的数据库;但是,用于与数据库交互的 PHP 代码是不会变的(当然,前提是使用某种可以封装数据库层的 MVC 范例)。...第一个要点是,使用 keras 软件包的深度学习从业人员应该开始在 TensorFlow 2.0 中使用 tf.keras。
但是,随着深度学习的普及,许多开发人员,程序员和机器学习从业人员都因其易于使用的API而蜂拥而至Keras。 那时,可用的深度学习库还不多,热门的库包括Torch,Theano和Caffe。...您可以使用MySQL,PostgreSQL或SQL Server作为数据库。但是,用于与数据库进行交互的PHP代码不会更改(当然,前提是您使用的是某种抽象数据库层的MVC范例)。...: Sequential Function Subclassing Sequential和Function范式都已经在Keras中存在很长时间了,但是对于许多深度学习从业者来说,Subclassing功能仍然是未知的...首先重要的一点是,使用keras软件包的深度学习从业人员应该开始在TensorFlow 2.0中使用tf.keras。...第二个要点是TensorFlow 2.0不仅仅是GPU加速的深度学习库。
此外,由于我是计算机视觉研究人员并长期活跃在这个领域,对卷积神经网络(细胞神经网络)方面的库会关注更多。 我把这个深度学习库的列表分为三个部分。 第一部分是比较流行的库,你可能已经很熟悉了。...2.Theano 在最开始我想说Theano是美丽的。如果没有Theano,我们根本不会达到现有的深度学习库的数量(特别是在Python)。...在Theano建设卷积神经网络就像只用本机Python中的numpy写一个定制的支持向量机(SVM),当然这个对比并不是很完美。 你可以做到吗? 当然可以。 它值得花费您的时间和精力吗? 嗯,也许吧。...我最喜欢的: 5.Keras 如果我必须选出一个最喜欢的深度学习Python库,我将很难在Keras和mxnet中做出抉择——但最后,我想我会选Keras。 说真的,Keras的好处我说都说不完。...在Keras中架构网络设计是十分轻松自然的。
如果需要写自己的定制模型呢?这时,就到了 Keras API 派上用场的时候。 什么是 Keras API?...Keras 的终极目标,是让尽可能更多人接触、使用深度学习。 直到现在,Keras API 的 TensorFlow 实现,是以外部开源资源库的形式存在的。...本例子中,一个男人把纸板箱放进车的行李箱里。任务是回答这个人在做什么。模型会处理该视频和问题,试图在可能的答案中挑选出正确的那一个。这次,它的回答是 “装货”。...再强调一遍,这是深度学习的常用操作,把封住不再改动的预训练模型添加入流水线。在 Keras 中,这项操作变得十分简便。...随后把整数序列导入嵌入层,这会把每个整数映射到一个矢量上。这些训练过的嵌入是模型的一部分。再把矢量序列导入 LSTM,简化为单一矢量。 这里有一个有意思的地方。
为了获得最佳学习体验,我建议您先阅读文章,再浏览代码,同时浏览文章附录部分。 Keras:基于Python的简易神经网络库 Keras是一个开源的高级库,用于开发神经网络模型。...上图是Keras API的分层结构。可以看出,它可以无缝地运行在不同的框架之上。 在神经网络中,特定层中的每个节点都采用前一层输出的加权和,对它们应用数学函数,然后将结果传递给下一层。...实际的句子是: ? 准备好了数据,我们就可以开始构建我们的神经网络了! 神经网络:构建模型 创建网络的第一步是在Keras中创建输入的占位符,在我们的例子中是情节和问题。...像Keras一样,我们首先定义模型(Sequential),然后添加嵌入层和dropout层,通过随机关闭节点来降低模型过拟合的可能性。...完成训练后,你可能会想知道“每次我想使用模型时我都要等很长时间吗?”答案是,不。Keras可以将权重和所有配置保存下来。如下所示: ? 如果想要使用保存的模型,只需要简单的加载: ?
在这篇文章中,我们将预览 TensorFlow 中高级 API 的未来方向,并回答大家常问的一些问题。 Keras 是广受开发者社区欢迎的高级 API,主要用于构建和训练深度学习模型。...FAQ ▌1、问:Keras 是否是一个独立的库? 答:其实,更应该把 Keras 视为一个 API。Keras 一直作为一个开源项目进行维护,大家可以在 (www.keras.io.)中找到。...▌2、问:Keras 只是 TensorFlow 或其他库的一个包装器吗? 答:不,这是一个常见的(但可以理解的)错误观念。...Sequential API 如果你正在学习机器学习,我们 建议你从 tf.keras Sequential API 开始,它非常直观、简洁,适用于机器学习中 95% 的问题。...,最简单的模型类型是把这些层堆叠起来。
然而,在许多现实生活场景中,多标签分类系统可能会遇到一些问题:电子邮件在大多数情况下是关于一个主要意图,有时它们具有次要意图,在极少数情况下还有第三个意图。很难找到涵盖所有多标签组合的标签数据。...图片 实现细节① 电子邮件正文:AI理解&处理整个方案中最重要的输入是正文数据,我们在深度学习中,需要把非结构化的数据表征为向量化形式,方便模型进行信息融合和建模,在自然语言处理NLP领域,我们也有一些典型的向量化嵌入技术可以进行对文本处理...大家可以使用 gensim 工具库或者 fasttext 工具库完成文本嵌入,也有很多预训练的词嵌入和文本嵌入的模型可以使用。...我们上面的方案中也是使用最先进的深度学习方法——直接使用 HuggingFace的 预训练模型 和 API 来构建正文文本嵌入。...图片transformer 系列的模型有很多隐层,我们可以有很多方式获取文本的向量化表征,比如对最后的隐层做『平均池化』获得文本嵌入,我们也可以用倒数第二层或倒数第三层(它们在理论上较少依赖于训练语言模型的文本语料库
如果答案是肯定的,那我们的笔记本电脑岂不就可以用来跑深度学习模型了,尤其是让我们下了血本的 MacBookPro。 MacBookPro 在科技圈覆盖面颇广,质量也不错,不能拿来做深度学习实在可惜。...在选购 MacBook 的过程中,有些人会为了独立显卡而多花点钱,但到了做深度学习的时候却发现这钱花得很冤枉,因为长期以来,多数机器学习模型只能通过通用 GPU 库 CUDA 使用英伟达的 GPU。...不过要想用上 GPU 的并行能力,英伟达的 CUDA 就不可回避,这种通用并行计算库是做深度学习所必须的。目前,之所以高性能云计算、DL 服务器都采用英伟达 GPU,主要原因还是在 CUDA。...上个月,Vertex.AI 又发布了 PlaidML 的 0.7.0 版本。 ? PlaidML 是一种可移植的张量编译器,可以在笔记本电脑、嵌入式设备或其他设备上进行深度学习。...甚至 PlaidML 我们都不需要接触,它已经集成到了常见的深度学习框架中,并允许用户在任何硬件中调用它。
PyTorch 的基本信息和特性 PyTorch 是一个开源的深度学习框架,提供了丰富的工具和库,为用户构建、训练和部署深度学习模型提供了便利。...Keras 3.0 是对 Keras 代码库的全新重构,可以在 JAX、TensorFlow 和 PyTorch 上运行,为大型模型的训练和部署提供了全新功能。...不足: 运行速度:由于 Keras 是在 TensorFlow 的基础上再次封装的,因此运行速度可能没有 TensorFlow 快。...这种高度集成化的设计使得机器学习流程更加流畅,特别适用于快速原型开发和实验。然而,PyCaret 的高度抽象化可能导致其不适用于需要深度定制或特殊处理的复杂项目。...Treelite 背后的主要创意来源于观察到在实际应用中,尽管训练机器学习模型可能需要大量的计算资源,但在部署阶段,尤其是对于决策树模型,可以通过优化来显著减少所需的资源和提高预测速度。
所有代码可以使用一些计算机视觉库如 OpenCV 和一些深度学习框架如 Keras 在 Python3.5 中编写。...此外,还有面向差异化场景的服饰推荐系统,该系统包括基于深度学习的第一层神经网络结构和第二层神经网络结构。通过第一层神经网络结构,从海量的服饰商品中选取用户可能感兴趣的商品,构成候选推荐集。...通过第二层神经网络结构,对候选推荐集中的商品进行排序,使用户可能最感兴趣的服饰排名靠前。...在应用方式上,各种 2vec 的应用、基于神经协同过滤的推荐以及在个性化推荐系统中的特征表示学习、序列模型和嵌入模型等,都为推荐系统的准确性和个性化提供了有力支持。...(二)学术论文数据库 arXiv:这是一个免费的学术预印本数据库,涵盖了计算机科学、数学、物理学等多个领域的研究论文。在深度学习和推荐系统领域,arXiv 上有很多最新的研究成果和技术进展。
领取专属 10元无门槛券
手把手带您无忧上云