首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

PySpark 数据类型定义 StructType & StructField

PySpark StructType 和 StructField 类用于以编程方式指定 DataFrame 的schema并创建复杂的列,如嵌套结构、数组和映射列。...StructType是StructField的集合,它定义了列名、列数据类型、布尔值以指定字段是否可以为空以及元数据。...StructType对象结构 在处理 DataFrame 时,我们经常需要使用嵌套的结构列,这可以使用 StructType 来定义。...在下面的示例中,列hobbies定义为 ArrayType(StringType) ,列properties定义为 MapType(StringType, StringType),表示键和值都为字符串。...,云朵君和大家一起学习了 SQL StructType、StructField 的用法,以及如何在运行时更改 Pyspark DataFrame 的结构,将案例类转换为模式以及使用 ArrayType、

1.3K30

SparkSql官方文档中文翻译(java版本)

当前,支持数值类型和字符串类型。自动解析分区类型的参数为:spark.sql.sources.partitionColumnTypeInference.enabled,默认值为true。...Hive区分大小写,Parquet不区分大小写 hive允许所有的列为空,而Parquet不允许所有的列全为空 由于这两个区别,当将Hive metastore Parquet表转换为Spark SQL...在后续的Spark版本中将逐渐增强自动调优功能,下表中的参数在后续的版本中或许将不再需要配置。 ?...如果在一个将ArrayType值的元素可以为空值,containsNull指示是否允许为空。...需要注意的是: NaN = NaN 返回 true 可以对NaN值进行聚合操作 在join操作中,key为NaN时,NaN值与普通的数值处理逻辑相同 NaN值大于所有的数值型数据,在升序排序中排在最后

9.1K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python下的Pandas中DataFrame基本操作(二),DataFrame、dict、array构造简析

    DataFrame简介:   DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。...7 subkey2 2 5 8 subkey3 3 6 9 请务必保证嵌套字典的key的一致性,不然的话,数据会异常,但不会显式的报错,而是显示出NaN,...7 3 4 8 第二种:将包含不同子列表的列表转换为数据框 from pandas.core.frame import DataFrame a=[[1,2,3,4],[5,6,7,8]]#包含两个不同的子列表...6 7 8 data=data.T#转置之后得到想要的结果 data.rename(columns={0:'a',1:'b'},inplace=True)#注意这里0和1都不是字符串 print...参考资料:《利用Python进行数据分析》 在一个空的dataframe中插入数据 def test(): LIST=[1,2,3,4] empty = pd.DataFrame(columns

    4.5K30

    一文介绍Pandas中的9种数据访问方式

    理解这一点很重要,因为如果把DataFrame看做是一个集合类型的话,那么这个集合的元素泛型即为Series; DataFrame可看做是一个二维嵌套的dict,其中第一层dict的key是各个列名;...通常情况下,[]常用于在DataFrame中获取单列、多列或多行信息。具体而言: 当在[]中提供单值或多值(多个列名组成的列表)访问时按列进行查询,单值访问不存在列名歧义时还可直接用属性符号" ....例如,当标签列类型(可通过df.index.dtype查看)为时间类型时,若使用无法隐式转换为时间的字符串作为索引切片,则引发报错 ? 切片形式返回行查询,且为范围查询 ?...不过这个命名其实是非常直观且好用的,如果熟悉Spark则会自然联想到在Spark中其实数据过滤主要就是用给的where算子。...在Spark中,filter是where的别名算子,即二者实现相同功能;但在pandas的DataFrame中却远非如此。

    3.8K30

    PySpark SQL——SQL和pd.DataFrame的结合体

    那么,在已经有了RDD的基础上,Spark为什么还要推出SQL呢?...1)创建DataFrame的方式主要有两大类: 从其他数据类型转换,包括RDD、嵌套list、pd.DataFrame等,主要是通过spark.createDataFrame()接口创建 从文件、数据库中读取创建...以上主要是类比SQL中的关键字用法介绍了DataFrame部分主要操作,而学习DataFrame的另一个主要参照物就是pandas.DataFrame,例如以下操作: dropna:删除空值行 实际上也可以接收指定列名或阈值...,当接收列名时则仅当相应列为空时才删除;当接收阈值参数时,则根据各行空值个数是否达到指定阈值进行删除与否 dropDuplicates/drop_duplicates:删除重复行 二者为同名函数,与pandas...中的drop_duplicates函数功能完全一致 fillna:空值填充 与pandas中fillna功能一致,根据特定规则对空值进行填充,也可接收字典参数对各列指定不同填充 fill:广义填充 drop

    10K20

    详解Apache Hudi Schema Evolution(模式演进)

    ,请指定子列的全路径 示例 • 在嵌套类型users struct中添加子列col1,设置字段为users.col1 • 在嵌套map类型member map...null,可为空,当前Hudi中并未使用 comment : 新列的注释,可为空 col_position : 列添加的位置,值可为FIRST或者AFTER 某字段 • 如果设置为FIRST,那么新加的列在表的第一列...Schema变更 COW MOR 说明 在最后的根级别添加一个新的可为空列 Yes Yes Yes意味着具有演进模式的写入成功并且写入之后的读取成功读取整个数据集 向内部结构添加一个新的可为空列(最后)...将嵌套字段的数据类型从 int 提升为 long Yes Yes 对于复杂类型(map或array的值),将数据类型从 int 提升为 long Yes Yes 在最后的根级别添加一个新的不可为空的列...作为一种解决方法,您可以使该字段为空 向内部结构添加一个新的不可为空的列(最后) No No 将嵌套字段的数据类型从 long 更改为 int No No 将复杂类型的数据类型从 long 更改为

    2.1K30

    spark2的SparkSession思考与总结2:SparkSession有哪些函数及作用是什么

    mod=viewthread&tid=23381 版本:spark2我们在学习的过程中,很多都是注重实战,这没有错的,但是如果在刚开始入门就能够了解这些函数,在遇到新的问题,可以找到方向去解决问题。...比如我们常用的创建DateFrame和DataTable方式就那么一种或则两种,如果更多那就看不懂了。在比如想测试下程序的性能,这时候如果自己写,那就太麻烦了,可以使用spark提供的Time函数。...emptyDataFrame函数 public Dataset emptyDataFrame() 返回一个空没有行和列的DataFrame emptyDataset函数 public 的JVM对象转换为内部Spark SQL表示形式)。...这个方法需要encoder (将T类型的JVM对象转换为内部Spark SQL表示形式), 或则可以通过调用 Encoders上的静态方法来显式创建。

    3.6K50

    Spark SQL 数据统计 Scala 开发小结

    1、RDD Dataset 和 DataFrame 速览 RDD 和 DataFrame 都是一个可以看成有很多行,每一行有若干列的数据集(姑且先按照记录和字段的概念来理解) 在 scala 中可以这样表示一个...在 Spark 2.1 中, DataFrame 的概念已经弱化了,将它视为 DataSet 的一种实现 DataFrame is simply a type alias of Dataset[Row]...Dataset API 属于用于处理结构化数据的 Spark SQL 模块(这个模块还有 SQL API),通过比 RDD 多的数据的结构信息(Schema),Spark SQL 在计算的时候可以进行额外的优化...retFlag = false } retFlag } ) // 这里 有两个地方需要说明 isNullAt 首先要判断要选取的列的值是否为空...,将空值替换为 0.0 unionData.na.fill(0.0) 5、NaN 数据中存在数据丢失 NaN,如果数据中存在 NaN(不是 null ),那么一些统计函数算出来的数据就会变成 NaN,

    9.6K1916

    大数据随记 —— DataFrame 与 RDD 之间的相互转换

    在 Spark SQL 中有两种方式可以在 DataFrame 和 RDD 中进行转换: ① 利用反射机制,推导包含某种类型的 RDD,通过反射将其转换为指定类型的 DataFrame,适用于提前知道...在 Scala 中,使用 case class 类型导入 RDD 并转换为 DataFrame,通过 case class 创建 Schema,case class 的参数名称会被利用反射机制作为列名。...case class 可以嵌套组合成 Sequences 或者 Array。这种 RDD 可以高效的转换为 DataFrame 并注册为表。...DataFrame 的 Schema 信息 val schemaString = "name age" // 导入所需要的类 import org.apache.spark.sql.Row...{StructType,StructField,StringType} // 根据自定义的字符串 schema 信息产生 DataFrame 的 Schema val

    1.1K10

    浅谈pandas,pyspark 的大数据ETL实践经验

    x utf-8 * 在Linux中专门提供了一种工具convmv进行文件名编码的转换,可以将文件名从GBK转换成UTF-8编码,或者从UTF-8转换到GBK。...--notest /your_directory 2.2 指定列名 在spark 中 如何把别的dataframe已有的schame加到现有的dataframe 上呢?...DataFrame使用isnull方法在输出空值的时候全为NaN 例如对于样本数据中的年龄字段,替换缺失值,并进行离群值清洗 pdf["AGE"] = pd.to_numeric(pdf["AGE"],...").dropDuplicates() 当然如果数据量大的话,可以在spark环境中算好再转化到pandas的dataframe中,利用pandas丰富的统计api 进行进一步的分析。...结果集合,使用toPandas() 转换为pandas 的dataframe 之后只要通过引入matplotlib, 就能完成一个简单的可视化demo 了。

    5.5K30

    SparkRDD转DataSetDataFrame的一个深坑

    场景描述:本文是根据读者反馈的一个问题总结而成的。 关键词:Saprk RDD 原需求:希望在map函数中将每一个rdd转为DataSet或者DataFrame。...在写Spark程序的同时,已经知道了模式,这种基于反射的方法可以使代码更简洁并且程序工作得更好。 第二种方法是通过一个编程接口来实现,这个接口允许构造一个模式,然后在存在的RDD上使用它。...官方给出的两个案例: 利用反射推断Schema Spark SQL支持将javabean的RDD自动转换为DataFrame。使用反射获得的BeanInfo定义了表的模式。...目前,Spark SQL不支持包含Map字段的javabean。但是支持嵌套的javabean和列表或数组字段。...| // +------------+ // $example off:schema_inferring$ } 编程指定Schema 如果不能提前定义JavaBean类(例如,记录的结构是在字符串中编码的

    1.2K20

    SparkRDD转DataSetDataFrame的一个深坑

    场景描述:本文是根据读者反馈的一个问题总结而成的。 关键词:Saprk RDD 原需求:希望在map函数中将每一个rdd转为DataSet或者DataFrame。...在写Spark程序的同时,已经知道了模式,这种基于反射的方法可以使代码更简洁并且程序工作得更好。 第二种方法是通过一个编程接口来实现,这个接口允许构造一个模式,然后在存在的RDD上使用它。...官方给出的两个案例: 利用反射推断Schema Spark SQL支持将javabean的RDD自动转换为DataFrame。使用反射获得的BeanInfo定义了表的模式。...目前,Spark SQL不支持包含Map字段的javabean。但是支持嵌套的javabean和列表或数组字段。...| // +------------+ // $example off:schema_inferring$ } 编程指定Schema 如果不能提前定义JavaBean类(例如,记录的结构是在字符串中编码的

    74320

    Spark MLlib特征处理 之 StringIndexer、IndexToString使用说明以及源码剖析

    更多内容参考我的大数据学习之路 文档说明 StringIndexer 字符串转索引 StringIndexer可以把字符串的列按照出现频率进行排序,出现次数最高的对应的Index为0。...针对训练集中没有出现的字符串值,spark提供了几种处理的方法: error,直接抛出异常 skip,跳过该样本数据 keep,使用一个新的最大索引,来表示所有未出现的值 下面是基于Spark MLlib...|e |3.0 | |5 |f |3.0 | +---+--------+-------------+ IndexToString 索引转字符串...,重新生成了一个DataFrame,此时想要把这个DataFrame基于IndexToString转回原来的字符串怎么办呢?...关键的地方在这里,给新增加的字段的类型StructField设置了一个Metadata。这个Metadata正常都是空的{},但是这里设置了metadata之后,里面包含了label数组的信息。

    2.7K00

    使用Python实现Excel数据与json格式数据互相转换

    提取指定字段:从每行 JSON 数据中提取需要的字段值。 3. 写入到 Excel:使用 pandas 库将提取的数据保存到 Excel 文件。...jsonimport pandas as pd# 定义文件路径json_file = "/filepath/data.json"excel_file = "/filepath/output.xlsx"# 初始化空列表...data_list.append({"Name": name, "Age": age, "City": city})# 将列表转换为 Pandas DataFramedf = pd.DataFrame...{excel_file}")注1:如果JSON格式不严谨,例如包含过多的换行符,空格等,导致按行读取解析报错,我们还需要再将JSON数据转为Excel之前,首先将JSON格式转换为紧凑格式,也就是我们前面提高的样例数据格式...{json_file}")代码说明 1. pd.read_excel(): • 读取 Excel 文件并将其加载到 Pandas 的 DataFrame 中。

    37685

    pyspark之dataframe操作

    、创建dataframe 3、 选择和切片筛选 4、增加删除列 5、排序 6、处理缺失值 7、分组统计 8、join操作 9、空值判断 10、离群点 11、去重 12、 生成新列 13、行的最大最小值...df=df.rename(columns={'a':'aa'}) # spark-方法1 # 在创建dataframe的时候重命名 data = spark.createDataFrame(data...转json,转完是个rdd color_df.toJSON().first() 5、排序 # pandas的排序 df.sort_values(by='b') # spark排序 color_df.sort...操作中,我们得到一个有缺失值的dataframe,接下来将对这个带有缺失值的dataframe进行操作 # 1.删除有缺失值的行 clean_data=final_data.na.drop() clean_data.show...({'LastName':'--', 'Dob':'unknown'}).show() 9、空值判断 有两种空值判断,一种是数值类型是nan,另一种是普通的None # 类似 pandas.isnull

    10.5K10

    python数据科学系列:pandas入门详细教程

    所以从这个角度讲,pandas数据创建的一种灵活方式就是通过字典或者嵌套字典,同时也自然衍生出了适用于series和dataframe的类似字典访问的接口,即通过loc索引访问。...例如,当标签列类型(可通过df.index.dtype查看)为时间类型时,若使用无法隐式转换为时间的字符串作为索引切片,则引发报错 ? 切片形式返回行查询,且为范围查询 ?...简单归纳来看,主要可分为以下几个方面: 1 数据清洗 数据处理中的清洗工作主要包括对空值、重复值和异常值的处理: 空值 判断空值,isna或isnull,二者等价,用于判断一个series或dataframe...各元素值是否为空的bool结果。...需注意对空值的界定:即None或numpy.nan才算空值,而空字符串、空列表等则不属于空值;类似地,notna和notnull则用于判断是否非空 填充空值,fillna,按一定策略对空值进行填充,如常数填充

    15K20

    《从0到1学习Spark》-- 初识Spark SQL

    为什么引入Spark SQL 在Spark的早起版本,为了解决Hive查询在性能方面遇到的挑战,在Spark生态系统引入Shark的新项目。...Shark是在Hive的代码库上构建的,使用Hive查询编译器来解析Hive查询并生成的抽象的语法树,它会转换为一个具有某些基本优化的逻辑计划。...这样Shark就能让Hive查询具有了内存级别的性能,但是Shark有三个问题需要处理: 1、Shark只适合查询Hive表,它无法咋RDD上进行关系查询 2、在Spark程序中将Hive Sql作为字符串运行很容易出错...当在编程语言中使用SQL时,结果会转换为DataFrame。 2、Data Source Api为使用Spark SQL读取和写入数据提供了统一的接口。...DataSet会使用编码器将JVM对象转换为用Spark的二进制格式存储的Dataset表形式。 Dataset Api及其子集DataFrame Api将取代RDD Api成为主流的 APi。

    77820
    领券