首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

(数据科学学习手札58)在R中处理有缺失值数据的高级方法

一、简介   在实际工作中,遇到数据中带有缺失值是非常常见的现象,简单粗暴的做法如直接删除包含缺失值的记录、删除缺失值比例过大的变量、用0填充缺失值等,但这些做法会很大程度上影响原始数据的分布或者浪费来之不易的数据信息...,因此怎样妥当地处理缺失值是一个持续活跃的领域,贡献出众多巧妙的方法,在不浪费信息和不破坏原始数据分布上试图寻得一个平衡点,在R中用于处理缺失值的包有很多,本文将对最为广泛被使用的mice和VIM包中常用的功能进行介绍...3、自编函数计算各个变量缺失比例   为了计算出每一列变量具体的缺失值比例,可以自编一个简单的函数来实现该功能: > #查看数据集中每一列的缺失比例 > miss.prop <- function(x)...,具体用法下文示例中会详细说明 maxit: 整数,用于控制每个数据框迭代插补的迭代次数,默认为5 seed: 随机数种子,控制随机数水平     在对缺失值插补过程中,非常重要的是为不同的变量选择对应的方法...值都远远小于0.05,至少在0.05显著性水平下每个参数都具有统计学意义;   4、对5个合成出的数据框在缺失值位置进行融合,这里需要用到新的函数complete,其主要有下面三个参数: data: 前面

3.1K40

评分卡模型开发-用户数据缺失值处理

在采用删除法剔除缺失值样本时,我们通常首先检查样本总体中缺失值的个数,在R中使用complete.cases()函数来统计缺失值的个数。 >GermanCredit[!...当我们采用数据集每行的属性进行缺失值填补时,通常有两种方法,第一种方法是计算k个(本文k=10)最相近样本的中位数并用这个中位数来填补缺失值,如果缺失值是名义变量,则使用这k个最近相似数据的加权平均值进行填补...,权重大小随着距离待填补缺失值样本的距离增大而减小,本文我们采用高斯核函数从距离获得权重,即如果相邻样本距离待填补缺失值的样本的距离为d,则它的值在加权平均中的权重为: ?...在寻找跟包含缺失值的样本最近的k个邻居样本时,最常用的经典算法是knn(k-nearest-neighbor) 算法,它通过计算样本间的欧氏距离,来寻找距离包含缺失值样本最近的k个邻居,样本x和y之间欧式距离的计算公式如下...式中:δ_i ( )是变量i的两个值之间的距离,即 ? 在计算欧式距离时,为了消除变量间不同尺度的影响,通常要先对数值变量进行标准化,即: ?

1.4K100
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据分析中非常实用的自编函数和代码模块整理

    当我们采用数据集每行的属性进行缺失值填补时,通常有两种方法,第一种方法是计算k个(我用的k=10)最相近样本的中位数并用这个中位数来填补缺失值。...如果缺失值是名义变量,则使用这k个最近相似数据的加权平均值进行填补,权重大小随着距离待填补缺失值样本的距离增大而减小,本文我们采用高斯核函数从距离获得权重,即如果相邻样本距离待填补缺失值的样本的距离为d...,则它的值在加权平均中的权重为: ?...在寻找跟包含缺失值的样本最近的k个邻居样本时,最常用的经典算法是knn(k-nearest-neighbor) 算法,它通过计算样本间的欧氏距离,来寻找距离包含缺失值样本最近的k个邻居,样本x和y之间欧式距离的计算公式如下...式中:δi()δ_i ( )是变量i的两个值之间的距离,即 ? 在计算欧式距离时,为了消除变量间不同尺度的影响,通常要先对数值变量进行标准化,即: ?

    1.1K100

    在python 深度学习Keras中计算神经网络集成模型

    该问题是多类分类问题,我们 在输出层上使用softmax激活函数对其进行建模。这意味着该模型将预测一个具有三个元素的向量,并且该样本属于三个类别中的每个类别。...该模型将期望具有两个输入变量的样本。然后,该模型具有一个包含25个节点的隐藏层和一个线性激活函数,然后是一个具有三个节点的输出层(用于预测三种类别中每个类别的概率)和一个softmax激活函数。...另一种选择是第一步,是在训练过程中将模型权重保存到文件中,然后再组合保存的模型中的权重以生成最终模型。...既然我们知道如何计算模型权重的加权平均值,我们就可以使用生成的模型评估预测。...线性和指数递减加权平均值 我们可以更新示例,并评估集合中模型权重的线性递减权重。

    86710

    稀疏学习:从人脑得到灵感,让深度学习突破算力限制

    这是动量优化技术背后的主要思想:我们对连续梯度取平均值以更好地估计局部最小值的方向。与罗盘指针在慢下来的时候会逐渐变得越来越准确这一特性类似,我们希望在随机梯度下降中更加高度地加权最近的梯度方向。...但无论如何,我们需要先找到缺失或零值权重的动量值(之前我们从训练中排除的那些),在这些缺失权重的位置增加动量值大的权重,这样就完成了稀疏动量算法,此过程如下图所示。 ?...稀疏动量通过查看临近梯度(动量)的加权平均值来确定在稀疏网络中增加新权重的位置,以找到能够一致减少误差的权重和层。(1)我们根据平均动量大小确定每层的重要性。(2)我们删除每一层较小50%的权重。...在基于CIFAR-10数据集的单发网络修剪法中,VGG16-D和WRN16-10模型可以通过使用5%密集权重匹配密集网络的性能,其他模型的密集权重水平与稀疏动量法的密集权重水平近似。...在ImageNet图像识别数据库中,我们无法达到密集性能水平,这表明需要改善稀疏动量的指标。但无论如何,稀疏动量法与其他方法相比,在训练样本过程中实现保持稀疏权重方面,具有明显优势。

    1.7K20

    【机器学习】揭秘深度学习优化算法:加速训练与提升性能

    指数加权平均 我们最常见的算数平均指的是将所有数加起来除以数的个数,每个数的权重是相同的。加权平均指的是给每个数赋予不同的权重求得平均数。移动平均数,指的是计算最近邻的 N 个数来获得平均数。...指数移动加权平均则是参考各数值,并且各数值的权重都不同,距离越远的数字对平均数计算的贡献就越小(权重较小),距离越近则对平均数的计算贡献就越大(权重越大)。...计算公式可以用下面的式子来表示: St 表示指数加权平均值; Yt 表示 t 时刻的值; β 调节权重系数,该值越大平均数越平缓。...梯度计算公式:Dt = β * St-1 + (1- β) * Dt St-1 表示历史梯度移动加权平均值 wt 表示当前时刻的梯度值 β 为权重系数 咱们举个例子,假设:权重 β 为 0.9,例如:...* s3 + d4 * 0.1 w 表示初始梯度 d 表示当前轮数计算出的梯度值 s 表示历史梯度值 梯度下降公式中梯度的计算,就不再是当前时刻 t 的梯度值,而是历史梯度值的指数移动加权平均值。

    13310

    彩色图变黑白图

    图片数据的格式 在进行图像变换之前,先来简单介绍一下图片在计算机中的数据格式,图像在计算机中的数据格式有很多,详见下表: 格式 说明 1 位图,像素 1 位 L 灰度图,像素 8 位 I 像素 int32...L 格式 L 格式就是灰度格式,每个像素对应一个灰度值,灰度值取值范围依旧是 0 到 255,所以灰度格式的图片在计算机中的存储格式是一个二维数组,其形状为(长, 宽)。...RGB 格式 转 L 格式 RGB 格式转 L 格式在开头就说了有三种方法,分别是:最大值法、平均值法、加权平均值法。在讲解和实现这三个算法之前先给大家看一下我所使用的图片。 ?...加权平均值法 加权平均值法就是给 RGB 三个元素给三个对应的权重,这三个权重暂且记作 WR、WG 和 WB,相乘相加得到灰度图的像素对应取值。...其实加权平均值法在 PIL 中有封装好的,对应逻辑和我自己实现的一模一样,权重都是一样的,调用过程如下: from PIL import Image image = Image.open('row_image.jpg

    1.3K10

    Transformers 4.37 中文文档(三十九)

    在注意力 SoftMax 之后的全局注意力权重,用于计算自注意力头中的加权平均值。这些是来自每个具有全局注意力的令牌对序列中每个令牌的注意力权重。 用于序列到序列语言模型输出的基类。...在注意力 softmax 后的全局注意力权重,用于计算自注意力头中的加权平均值。这些是从具有全局注意力的每个令牌到序列中的每个令牌的注意力权重。 用于序列到序列问答模型输出的基类。...在注意力 softmax 后的全局注意力权重,用于计算自注意力头中的加权平均值。这些是从具有全局注意力的每个令牌到序列中的每个令牌的注意力权重。...在注意力 SoftMax 之后的全局注意力权重,用于计算自注意力头中的加权平均值。这些是每个具有全局注意力的令牌对序列中每个令牌的注意力权重。...在注意力 softmax 之后的全局注意力权重,用于计算自注意力头中的加权平均值。这些是来自具有全局注意力的每个令牌到序列中每个令牌的注意力权重。

    15010

    你不知道的 - “平均值”

    你会发现A组数据43-55年龄的人员数最多,B组数据62-66的年龄人数最多,虽然两组数据的平均值是一样的,但是人员结构和人员的集中度确实不一样的,所以在分析数据的时候不一定是看平均数。...,最后得出的平均增长率是 0,064 加权平均值 加权平均值是我们用的比较多的另一种平均值,比如算人均的工资,人员的绩效权重,比赛的打分等都要用到加权平均值。...加权平均值的定义是 “对不同的分析数据赋予不同的权重值后,再计算平均值” 也就是说给不同的数据给与不同的权重,最后算出平均值,加权平均值和算数平均值比起来更科学,受数据的影响更小,因为算数平均值很容易受最大值最小值的影响...看上面这个案例,通过计算平均值和加权平均值其实还是有区别的,所以我们平时在进行一些数据的平均计算的时候还是以加权平均为计算方式。...在数据的平均计算中,还有一个很重要的能反应数据平均的值,那就是中位值,如果你是做薪酬的,就一定离不开中位的数据分析,中位值和平均值是两个不同的数据分析值,我们在下一篇文章就好好和大家聊聊中位值。

    1K40

    Transformers 4.37 中文文档(四十)

    在注意力 softmax 之后的全局注意力权重,用于计算自注意力头中的加权平均值。这些是具有全局注意力的每个令牌到序列中的每个令牌的注意力权重。...在注意力 softmax 之后的局部注意力权重,用于计算自注意力头中的加权平均值。这些是来自序列中每个令牌的注意力权重,分别对全局注意力的每个令牌(前x个值)和注意力窗口中的每个令牌进行注意力。...在注意力 softmax 之后的局部注意力权重,用于计算自注意力头中的加权平均值。这些是来自序列中每个令牌到具有全局注意力的每个令牌(前x个值)和到注意力窗口中的每个令牌的注意力权重。 1值)。...在注意力 softmax 之后的局部注意力权重,用于计算自注意力头中的加权平均值。这些是来自序列中每个令牌到具有全局注意力的每个令牌(前x个值)和到注意力窗口中的每个令牌的注意力权重。 1值)。...在自注意力头中用于计算加权平均值的全局注意力权重。这些是具有全局注意力的每个标记到序列中的每个标记的注意力权重。

    54910

    R语言时变向量自回归(TV-VAR)模型分析时间序列和可视化|附代码数据

    红色的一列w_t_e=3表示我们在t=3时估计局部模型可能使用的一组权重:接近t=3的时间点的数据得到最高的权重,而更远的时间点得到越来越小的权重。定义这些权重的函数显示在右图中。...左图中的蓝色柱子和右边相应的蓝色函数表示另一种可能的加权。使用这种加权,我们结合了更少的时间上接近的观测值。这使我们能够在参数中检测到更多的 "时间可变性",因为我们对更少的时间点进行了平滑处理。...此外,我们还提供了所有测量的时间戳,时间点=time,来说明缺失的测量。然而,请注意,我们仍然假设滞后期大小为1。时间戳只是用来确保加权确实给那些最接近当前估计点的时间点最高的权重。...从模型对象中提供新数据和变量可以计算新样本的预测误差。 参数errorCon = c("R2", "RMSE")指定解释方差的比例(R^2)和均方根误差(RMSE)作为预测误差。...除了估计模型外,我们还讨论了选择适当的带宽参数,如何计算(时变的)预测误差,以及如何将模型的不同方面可视化。

    71810

    如何用R语言在机器学习中建立集成模型?

    多数投票:它被 定义为 在预测分类问题的结果的同时,从多个模型预测中以最大投票/推荐进行预测。 ? 加权平均值:在此,不同的权重应用于来自多个模型的预测,然后取平均值 。 ?...3.集合的优点和缺点 3.1优点 集成是一种经过验证的方法,可以提高模型的准确性,适用于大多数情况。 集成使模型更加稳健和稳定,从而确保在大多数情况下测试用例具有良好的性能。...您可以使用集成来捕获数据中的线性和简单以及非线性复杂关系。这可以通过使用两个不同的模型并形成两个集合来完成。 3.2缺点 集成减少了模型的可解释性,并且很难在最后绘制任何关键的业务见解。...这非常耗时,因此可能不是实时应用程序的最佳选择。 4.在R中实施集合的实用指南 #让我们看一下数据集数据的结构 'data.frame':614 obs。...#多数投票 加权平均值:我们可以采用加权平均值,而不是采用简单平均值。通常,对于更准确的模型,预测的权重很高。让我们将0.5分配给logistic回归,将0.25分配给KNN和随机森林。

    1.8K30

    第二章 2.3-2.5 带修正偏差的指数加权平均

    大体公式就是前一日的 V 值加上当日温度的 0.1 倍,如果用红线表示这个计算数值的话就可以得到每日温度的指数加权平均值. ?...对于 的理解,你可以将其认为该数值表示的是 天的平均值,例如如果这里取 是取 0.9,那么这个 V 值表示的是十天以来的温度的加权平均值.如果我们设置 值是 0.98 那么我们就是在计算...0.98 的权重给了原先的值,只有 0.02 的权重给了当日的值....「内存代码仅仅占用一行数字而已,不断覆盖掉原有的 V 值即可,只占单行数字的存储和内存.虽然不是最精确的计算平均值的方法,但是相比于原有的计算平均值需要保存所有数据求和后取平均的方法效率更高和资源占用率大大减小...补充 在机器学习中,在计算指数加权平均数的大部分时候,大家不太在乎偏差修正,大部分宁愿熬过初始阶段,拿到具有偏差的估测,然后继续计算下去.

    1.3K30

    时序预测竞赛之异常检测算法综述

    暂时变更异常temporary change (TC):造成这种离群点的干扰是在T时刻干扰发生时具有一定初始效应,以后随时间根据衰减因子的大小呈指数衰减。...,有多种处理方式,如果是时间序列中的值,那么我们可以认为这个时刻的操作属于异常的;如果是将异常值检测用于数据预处理阶段,处理方法有以下四种: 删除带有异常值的数据; 将异常值视为缺失值,交给缺失值处理方法来处理...算法流程: 样本从小到大排序 求样本的mean和dev 计算min/max与mean的差距,更大的那个为可疑值 求可疑值的z-score (standard score),如果大于Grubbs临界值,那么就是...如下图所示: 在红色矩形方框中,向下突起点被误报为异常点。...每个data point的权重不同,离当前时间点越近的点的权重越大,历史时间点的权重随着离当前时间点的距离呈指数衰减,从当前data point往前的data point,权重依次为 该算法可以检测一个异常较短时间后发生另外一个异常的情况

    1.3K20

    【时间序列】时序预测竞赛之异常检测算法综述

    暂时变更异常temporary change (TC):造成这种离群点的干扰是在T时刻干扰发生时具有一定初始效应,以后随时间根据衰减因子的大小呈指数衰减。...,有多种处理方式,如果是时间序列中的值,那么我们可以认为这个时刻的操作属于异常的;如果是将异常值检测用于数据预处理阶段,处理方法有以下四种: 删除带有异常值的数据; 将异常值视为缺失值,交给缺失值处理方法来处理...算法流程: 样本从小到大排序 求样本的mean和dev 计算min/max与mean的差距,更大的那个为可疑值 求可疑值的z-score (standard score),如果大于Grubbs临界值,那么就是...在红色矩形方框中,向下突起点被误报为异常点。...每个data point的权重不同,离当前时间点越近的点的权重越大,历史时间点的权重随着离当前时间点的距离呈指数衰减,从当前data point往前的data point,权重依次为 ?

    3.2K21

    iOS 网速检测方案

    半衰期设计 在计算两个权重的时候都是用pow(衰减因子, diff)计算的,那这个“衰减因子”如何得到的呢,以时间衰减因子为例: double GetWeightMultiplierPerSecond(...“每秒衰减因子”,比如这里就是一个 RTT 值和当前时间差异 60 秒则权重衰减为开始的一半。...加权算法设计 拿到权值后如何计算呢,我们最容易想到的是加权平均值算法,但它同样会受长尾数据的影响。...比如当某个 RTT 值比正常值大几十倍且权重稍高时,加权平均值也会很大,更优的做法是获取加权中值,这也是 nqe 的做法,伪代码为: //按 RTT 值从小到大排序 samples.sort() //目标权重是总权重的一半...网络状况快速劣化场景 若在某一个时刻网络突然变得很差,大量请求堆积在队列中,由于我们 RTT 值依赖于网络请求落地,这时计算的目标 RTT 值具有滞后性。

    1.4K10

    Transformers 4.37 中文文档(十六)

    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。 模型输出的基类,具有潜在的隐藏状态和注意力。...解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。 模型输出的基类,具有潜在的隐藏状态和注意力。...注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。 模型输出的基类,具有潜在的隐藏状态和注意力。...注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。 模型输出的基类,具有潜在的隐藏状态和注意力。...注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。 模型输出的基类,具有潜在的隐藏状态和注意力。

    48610

    精确度 召回率 f1_score多大了

    ‘samples’: 为每个实例计算指标,找到它们的均值(只在多标签分类的时候有意义,并且和函数accuracy_score不同)....Macro Average 宏平均是指在计算均值时使每个类别具有相同的权重,最后结果是每个类别的指标的算术平均值。...sklearn中recall_score方法和precision_score方法的参数说明都是一样的,所以这里不再重复,只是把函数和返回值说明贴在下面: 计算召回率 召回率是比率tp / (tp...Recall和Precision只有计算公式不同,它们average参数为’macro’,‘micro’,’weighted’和None时的计算方式都是相同的,具体计算可以使用上节列出来的TP、FP、FN...F1 score可以解释为精确率和召回率的加权平均值. F1 score的最好值为1,最差值为0. 精确率和召回率对F1 score的相对贡献是相等的.

    97320
    领券