首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

ggplot2绘制森林图(有亚组和没亚组)

之前写了很多篇推文介绍森林图,包括了常见的forestplot/forestploter/ggforestplot等多个R包: 画一个好看的森林图 用更简单的方式画森林图 R语言画森林图系列3 R语言画森林图系列...4 R语言画误差线的5种方法 虽然写的很详细,有亚组和没亚组的都包括了,但是base r的语法对于新手来说确实很难理解,不如ggplot2系列清晰易懂,而且各种空格/NA等占位符的使用也不好理解。...先把误差线画出来,可以参考这篇推文:R语言画误差线的5种方法 tmp mutate(id = row_number()) p1 mutate(type = ifelse...size=.8)+ geom_point(aes(y = id, x = mean,color=type),size=3)+ scale_color_identity()+ geom_vline...size=.8)+ geom_point(aes(y = fct_rev(id), x = mean,color=type),size=3)+ scale_color_identity()+ geom_vline

2.6K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在vscode中配置R的开发环境

    并且在1.21中完善了windows系统下的extension的bug。...整体看起来效果还是非常不错的,开发者在整体上还是保留了Rstudio和visual studio中对于View()这个函数的配置,还在此基础上添加了search功能,此外对Rshiny可视化的支持也非常棒...▶ pip install radian 四 在R中安装languageserver和jsonlite R LSP client需要借助languageserver实现函数的智能识别,R session...的配置 Path中添加R的执行文件的路径,当然也可以选择radian.exe的路径(该路径存在于python的scripts文件夹中)。...中运行的话,则会出现R session watcher不启用的状况,data和plot的review窗口则会自动调用自身gui所带的review窗口,以在windows中选择radian.exe路径为例

    11.8K20

    你还缺scRNA-seq的workflow吗?

    #根据你正在处理的数据集的大小,这可能会导致内存问题。 #或者,你将缺失的、充满0计数的基因添加到缺失基因的矩阵中。 #在合并之前,必须确保基因的顺序相同。...如果你决定使用后者处理,一般建议保持在中位数附近的3-5MADs范围内。在本文中,我们将慷慨地接受任何低于中位数加上5倍的MAD。...之后,我们在meta data中存储每个样本赋值。...Data integration 数据整合 在一些情况下,在不同预处理之后显示有明显批次效应,整合数据集则是有意义的。同样,有许多方法可以执行此任务。...在最近的一篇论文中Germain等人建议使用intrinsicDimension包中的maxLikGlobalDimEst()函数来测试数据集的维数。为此,还必须为参数k选择一个值。

    28810

    【R语言】因子在临床分组中的应用

    前面给大家简单介绍了 ☞【R语言】R中的因子(factor) 今天我们来结合具体的例子给大家讲解一下因子在临床分组中的应用。 我们还是以TCGA数据中的CHOL(胆管癌)这套数据为例。...关于这套临床数据的下载可以参考 ☞如何从TCGA数据库下载RNAseq数据以及临床信息(一) 前面我们也给大家介绍过一些处理临床数据的小技巧 ☞【R语言】卡方检验和Fisher精确检验,复现临床paper...☞R生成临床信息统计表 ☞玩转TCGA临床信息 ☞TCGAbiolinks获取癌症临床信息 接下来我们先读入临床数据 #读取临床数据 clin=read.table("clinical.tsv...参考资料: ☞【R语言】R中的因子(factor) ☞如何从TCGA数据库下载RNAseq数据以及临床信息(一) ☞【R语言】卡方检验和Fisher精确检验,复现临床paper ☞R生成临床信息统计表...☞玩转TCGA临床信息 ☞TCGAbiolinks获取癌症临床信息 ☞肿瘤TNM分期 ☞R替换函数gsub

    3.3K21

    深度 | 在 R 中估计 GARCH 参数存在的问题

    在原假设下,滚珠轴承的平均直径不会改变,而在备择假设中,在制造过程中的某些未知点处,机器变得未校准并且滚珠轴承的平均直径发生变化。然后,检验在这两个假设之间做出决定。...我们希望将我们的检验应用于检测 GARCH 模型中的结构性变化,这是金融时间序列中的常见模型。据我所知,用于 GARCH 模型估计和推断(以及其他工作)的“最新技术” R 包是 fGarch。...下面是一个辅助函数,用于通过 garchFit()(在计算过程中屏蔽所有 garchFit() 的输出)来提取特定拟合的系数和标准差。...我在本文中强调的问题让我更加意识到选择在优化方法中的重要性。我最初的目标是编写一个函数,用于根据 GARCH 模型中的结构性变化执行统计检验。...这是一个我自认知之甚少的主题,如果 R 社区中的某个人已经观察到了这种行为并且知道如何解决它,我希望他们会在评论或电子邮件中告诉我。

    6.6K10

    R8在Android手Q中的应用

    R8作为一个新工具,鲁棒性不如proguard,在面对手Q这个庞然大物时,出现了一些问题,本文主要分享一下R8在手Q应用遇到的问题,供后面有需要的同学参考。...dex中,也是在Enqueuer中实现,traceMainDex方法中;5、IRConvert , 将class字节码转换为Dex的过程,其中IR(Intermediate Representation...三、R8在手Q应用中遇到的问题3.1 Liveness Analyze过程—根可达性算法在介绍补丁问题前,先简单介绍Liveness Analyze过程,后面的几个问题都和Liveness Analyze...理解根可达性算法前需要先理解四个概念:1、Root: 在proguard 配置文件中明确要keep的对象,算法的输入。...在使用R8过程中,我们发现同样的代码,构建多次,高概率出现不正常的dexDiff,具体表现如下:IDragview 的clinit方法有时候存在,有时不存在,导致生成的补丁不稳定。

    2.2K30

    组件分享之后端组件——在Go中实现的断路器gobreaker

    组件分享之后端组件——在Go中实现的断路器gobreaker 背景 近期正在探索前端、后端、系统端各类常用组件与工具,对其一些常见的组件进行再次整理一下,形成标准化组件专题,后续该专题将包含各类语言中的一些常用组件...组件基本信息 组件:gobreaker 开源协议:MIT license 内容 本节我们分享一个在Go中实现的断路器gobreaker 1、安装 go get github.com/sony/gobreaker...Interval是CircuitBreaker关闭状态的循环周期,用于清除内部计数,稍后将在本节中描述。如果Interval为0,断路器在闭合状态下不清除内部计数。...ReadyToTripCounts每当请求在关闭状态下失败时,都会使用 的副本调用。如果ReadyToTrip返回true,CircuitBreaker将被置于打开状态。...uint32 ConsecutiveSuccesses uint32 ConsecutiveFailures uint32 } CircuitBreakerCounts在状态变化或关闭状态间隔时

    1.1K20

    深度 | 在R中估计GARCH参数存在的问题(续)

    本期作者:徐瑞龙 未经授权,严禁转载 本文承接《在 R 中估计 GARCH 参数存在的问题》 在之前的博客《在 R 中估计 GARCH 参数存在的问题》中,Curtis Miller 讨论了 fGarch...rugarch 包的使用 rugarch 包中负责估计 GARCH 模型参数的最主要函数是 ugarchfit,不过在调用该函数值前要用函数 ugarchspec 创建一个特殊对象,用来固定 GARCH.... ~ parameter) print(ggp10k + ggtitle("solnp Optimization")) 相较于 β,ω 和 α 的估计值更加稳定,这一节论和之前文章中的结论大体一致,...结论 在一般大小样本量的情况下,rugarch 和 fGarch 的表现都不好,即使改变函数的最优化算法(相关代码未贴出)也于事无补。...不过当样本量极端大时,rugarch 的稳定性大幅改善,这似乎印证了机器学习中的一个常见观点,即大样本 + 简单算法胜过小样本 + 复杂算法。

    2K30

    TidyFriday Excel 用户的福音!在 R 中实现 Excel 的功能

    许多 R 的新用户在金融、市场、商业分析等领域有丰富的行业经验,但是他们并没有太多的编程背景,所以日常工作中还是选择 Excel、PowerBI 这些传统的工具进行工作;tidyquant 的作者意识到了这些痛点...(tidyverse) library(tidyquant) library(knitr) 在 R 中实现透视表 很多 Excel 的用户青睐它的数据透视表功能,现在 R 也可以通过 pivot_table...R 中实现 VLOOKUP Excel 中另一个强大的函数是 VLOOKUP,VLOOKUP 的主要功能如下: ?...company) [1] "Amazon" 不过我们在 Excel 中使用 VLOOKUP 是想在一个表中添加列,这列的值要去另一个表中查找, 在 R 中怎么做呢?...在 R 中实现各种「IFS」函数 很多同学喜欢 Excel 是因为它的条件筛选功能,比如SUMIFS(), COUNTIFS(), AVERAGEIFS()等; ? 在 R 中如何实现呢?

    2.5K30

    HMM模型在量化交易中的应用(R语言版)

    函数形式:X(t+1) = f( X(t) ) HMM由来 物理信号是时变的,参数也是时变的,一些物理过程在一段时间内是可以用线性模型来描述的,将这些线性模型在时间上连接,形成了Markov链。...HMM在波动率市场中的应用 输入是:ATR(平均真实波幅)、log return 用的是depmixS4包 模型的输出并不让人满意。 HS300测试 去除数据比较少的9支,剩291支股票。...训练数据:上证指数的2007~2009 测试数据:沪深300成份股2010~2015 交易规则:longmode在样本内收益最大对应的隐状态 & shortmode在样本内收益最大对应的隐状(交集)...,然后在每天入选的股票中平均分配资金 (注:0票就相当于平均分配资金在投票>0的股票上) n=5 n=15 50个HMM模型里10-18个投票,结果都挺理想了!...(当然,需要更多的测试,比如在全股票市场或者在商品/期货/外汇/黄金上,或者更长的数据上测试) (ps:在291支股票上测试一次HMM大概需要8-10分钟,50次差不多要一个后半夜!!!)

    2.9K80

    【GNN】R-GCN:GCN 在知识图谱中的应用

    (只发到 C 可能是因为 R-GCN 表现不太好) 这篇论文主要有两大贡献: 证明了 GCN 可以应用于关系网络中,特别是链接预测和实体分类中; 引入权值共享和系数约束的方法使得 R-GCN 可以应用于关系众多的网络中...写的具体一点的话 就是那个经典的 GCN。基于这个模型作者定了一个简单的前向传播模型: 其中, 表示节点 i 在关系 r 下的邻居节点的集合; 是一个标准化常量,可以实现指定也可以学习得到。...从上面这个公式中我们可以得到以下几点信息: R-GCN 的每层节点特征都是由上一层节点特征和节点的关系(边)得到; R-GCN 对节点的邻居节点特征和自身特征进行加权求和得到新的特征; R-GCN 为了保留节点自身的信息...R-GCN 模型中单节点更新的计算图如图下所示,其中红色节点为将被更新的节点,蓝色节点为邻居节点: ?...基函数分解可以看作是不同关系类型之间权重共享的一种方式;而块分解可以看作是对每个关系类型的权值矩阵的稀疏约束,其核心在于潜在的特征可以被分解成一组变量,这些变量在组内的耦合比在组间的耦合更紧密。

    3.2K20

    主成分分析(PCA)在R 及 Python中的实战指南

    为了操作上的理解,我也演示了在R使用这个技术并带有解释。 注意: 要理解本文的内容,需要有统计学的知识。 什么是主成分分析?...例如,想象一下这么一个数据集,在该数据集中存在很多变量的度量单位:加仑、公里、光年等等。可以肯定的是在这些变量中的方差范围会很大。...这种主导普遍存在是因为变量有相关的高方差。当变量被缩放后,我们便能够在二维空间中更好地表示变量。 在Python & R中应用 主成分分析方法 (带有代码注解) ▼ 要选多少主成分?...用主成分分析成分预测建模 ▼ 我们在训练集上完成主成分计算之后,现在让我们理解利用这些成分在测试数据上做预测的过程。这个过程是简单的。...让我们在R中做一下: #加上带主成分的训练集 > train.data <- data.frame(Item_Outlet_Sales = train$Item_Outlet_Sales, prin_comp

    2.9K80

    【R语言在最优化中的应用】igraph 包在图与网络分析中的应用

    source 和target 分别代表网络中要求最大流的起始点和终点,capacity 为边的权重。...该图中任意两顶点之间的最短路程(考虑方向)。 ? 解:这三个问题是图论中的典型问题。首先,应该在R中构造该图,然后分别调用相关命令即可。...由15 – 23 行(最短路矩阵) 可以知道该网络上每两个定点的最短路。如顶点0 到顶点7 的最短路为10(矩阵中第1 行第8 列对应的元素)。...需要说明的是,第6,11 行结果表示这是R软件打开的第35,36 个tk 图形设备,与本题的具体内容无关。...而LINGO 则需要针对每个问题输入不同模型、约束条件等,远远不如R效率高,至于绘图功能,LINGO 还需要很大的改进。 求红包

    4.6K30

    R语言在RCT中调整基线时对错误指定的稳健性

    p=6400 众所周知,调整一个或多个基线协变量可以增加随机对照试验中的统计功效。...调整分析未被更广泛使用的一个原因可能是因为研究人员可能担心如果基线协变量的影响在结果的回归模型中没有正确建模,结果可能会有偏差。 建立 我们假设我们有关于受试者的双臂试验的数据。...我们让表示受试者是否被随机分配到新治疗组或标准治疗组的二元指标。在一些情况下,基线协变量可以是在随访时测量的相同变量(例如血压)的测量值。...错误指定的可靠性 我们现在提出这样一个问题:普通最小二乘估计是否是无偏的,即使假设的线性回归模型未必正确指定?答案是肯定的 。...但是,如果我们能够正确指定基线协变量的影响,我们也会看到更大的效率增益。

    1.7K10
    领券