前面给大家简单介绍了 ☞【R语言】R中的因子(factor) 今天我们来结合具体的例子给大家讲解一下因子在临床分组中的应用。 我们还是以TCGA数据中的CHOL(胆管癌)这套数据为例。...关于这套临床数据的下载可以参考 ☞如何从TCGA数据库下载RNAseq数据以及临床信息(一) 前面我们也给大家介绍过一些处理临床数据的小技巧 ☞【R语言】卡方检验和Fisher精确检验,复现临床paper...*","stage I/II",stage) #转换成因子 stage=factor(stage) stage 可以得到下面这个两分组的因子 方法二、直接使用factor函数 #删除组织病理学分期末尾的...gsub("[ABCD]$","",clin$ajcc_pathologic_stage) #将Stage III和Stage IV替换成stage III/IV,剩下的stageI和II保持不变 stage...参考资料: ☞【R语言】R中的因子(factor) ☞如何从TCGA数据库下载RNAseq数据以及临床信息(一) ☞【R语言】卡方检验和Fisher精确检验,复现临床paper ☞R生成临床信息统计表
我们在训练神经网络的时候,超参数batch_size的大小会对模型最终效果产生很大的影响,通常的经验是,batch_size越小效果越差;batch_size越大模型越稳定。...如何在有限的计算资源下,采用更大的batch_size进行训练,或者达到和大batch_size一样的效果?...结果爆显存了,那么不妨设置batch_size=16,然后定义一个变量accum_steps=4,每个mini-batch仍然正常前向传播以及反向传播,但是反向传播之后并不进行梯度清零,因为PyTorch中的...通过这种延迟更新的手段,可以实现与采用大batch_size相近的效果 References pytorch中的梯度累加(Gradient Accumulation) Gradient Accumulation...in PyTorch PyTorch中在反向传播前为什么要手动将梯度清零?
将JupyterLab集成到VS Code中,可以让你在一个统一的开发环境中完成代码编辑、调试和运行等操作,避免了频繁切换不同软件带来的不便。...接下来,我们还要配置一些设置,来更快捷的使用。拓展程序安装虽然目前我们能在Jupyterlab中使用R了,但是实际用的时候会发现代码补全和一些快捷键不方便,而Rstudio中各种辅助配置非常完善了。...这时候我们就需要VScode中的一些插件来方便我们写代码。我们直接在左侧的拓展中搜索R,然后安装即可。...总结总的来说,R语言的IDE中,Rstudio是最为常用和流行的。而JupyterLab则更多地被应用在Python数据分析领域。...但是,VS Code也是一个非常强大的编辑器,通过安装一些插件,可以实现很多功能。在本文中,我们介绍了如何通过安装插件,在VS Code中远程连接服务器,并愉快地开始编写Python和R代码。
数据分组,根据数据分析对象的特征,按照一定的数值指标,把数据分析对象划分为不同的区间部分来研究,以揭示内在的联系和规律性; 在R中,我们常用ifelse函数来进行数据的分组,跟excel中的if函数是同一种用法..."(20,40]" "(0,20]" "(60,80]" "(80,100]" [15] "(0,20]" > newData <- data.frame(data, level) 数据分组后的结果
cumsum 可以实现整体的累加 > cumsum(1:10) [1] 1 3 6 10 15 21 28 36 45 55 向量中第一个元素为起始,后面是其需要加的数。...Usage cumsum(x) cumprod(x) cummax(x) cummin(x) by 使用by()分组计算描述性统计量,它可以一次返回若干个统计量。...格式为: by(data, INDICES, FUN) 其中data是一个数据框或矩阵;INDICES是一个因子或因子组成的列表,定义了分组;FUN是任意函数。...通过INDICES 定义的因子,对data 内容进行分组,即将整个data大数据框,划分为了若干个小的数据框,而函数则定义了对这些分组数据处理的方式。...,其将exp 按照symbol 中的信息划分为若干个矩阵,而function 则定义了在同一组(同一symbol)中的列名筛选其中平均值最大的那一列( which.max(rowMeans(x)) )。
在本文[1]中,我们将首先了解数据并行(DP)和分布式数据并行(DDP)算法之间的差异,然后我们将解释什么是梯度累积(GA),最后展示 DDP 和 GA 在 PyTorch 中的实现方式以及它们如何导致相同的结果...和 3. — 如果您幸运地拥有一个大型 GPU,可以在其上容纳所需的所有数据,您可以阅读 DDP 部分,并在完整代码部分中查看它是如何在 PyTorch 中实现的,从而跳过其余部分。...从上面的例子中,我们可以通过 3 次迭代累积 10 个数据点的梯度,以达到与我们在有效批量大小为 30 的 DDP 训练中描述的结果相同的结果。...梯度累积代码 当反向传播发生时,在我们调用 loss.backward() 后,梯度将存储在各自的张量中。...因此,为了累积梯度,我们调用 loss.backward() 来获取我们需要的梯度累积数量,而不将梯度设置为零,以便它们在多次迭代中累积,然后我们对它们进行平均以获得累积梯度迭代中的平均梯度(loss
♣ 题目部分 在Oracle中,差异增量备份和累积增量备份的区别是什么? ♣ 答案部分 数据库备份可以分为完全备份和增量备份。完全数据文件备份是包含文件中所有已用数据块的备份。...增量备份是0级备份,其中包含数据文件中除从未使用的块之外的所有块;或者是1级备份,其中仅包含自上次备份以来更改过的那些块。0级增量备份在物理上与完全备份完全一样。...在RMAN中建立的增量备份可以具有不同的级别,每个级别都使用一个不小于0的整数来标识,也就是在BACKUP命令中使用LEVEL关键字指定的,例如LEVEL = 0表示备份级别为0,LEVEL = 1表示备份级别为...RMAN中增量备份有两种:差异增量备份(DIFFERENTIAL)和累计增量备份(CUMULATIVE),它们的区别如下表所示: 方式 关键字 默认 说明 差异增量备份 DIFFERENTIAL 是 将备份上次进行的同级或低级备份以来所有变化的数据块...,有同级备份同级,无同级备份低级 累积增量备份 CUMULATIVE 否 将备份上次进行的低级备份以来所有变化的数据块 差异增量备份和累计增量备份如下图所示: ?
如果使用惯了tidyverse套装,我们脑子里容易冒出来的是这样的解法:使用分组应用。...但如果分组有成千上万,分组的时间代价就很高了。有没有其他的方式可以解决该问题呢? 其实处理这种去重问题,特别还涉及到排序,我们可以采用先排序再去重的方式解决。...,在这个只有2个变量的数据集测试中,第一种方法远快于第二种方法。...但注意,这里其实存在很多的变量,包括数据的行数、分组数目、以及实际情况下数据集的变量数目。哪种更适合需要根据现实场景进行测试考察。...本文的重点是,问题的解决之道往往不只一种,当程序慢下来的时候,我们不要忘记思考和尝试其他的方案。
使用库'Totalizer_Lib_TIA_Portal' 中的函数块 'Totalizer' ,可以计算出一个瞬时流量的累积值。...图 01 "Totalizer" 功能块必须在循环中断(比如OB30)中调用,表 01 是 "Totalizer" 功能块的输入和输出变量列表 参数 变量 数据类型 描述 输入 Value Real...表 01 在一个循环中 输入变量 "Interval" 和"Cycle" 数据类型 Time 被转化为 Real 类型。...例子: 在图 01 的例子中,“Value” 变量值是 60.0 ,同时变量 “Interval” 的时间值是一分钟。 输出变量 "Total" 在1 分钟内从1累加到了60。...功能块中包含SCL程序并附有德文和英文的注释。 复制压缩文件到一个单独的目录,然后双击启动文件解压。此时库会自动解压所有相关的子目录。
广义估计方程和混合线性模型在R和python中的实现欢迎大家关注全网生信学习者系列:WX公zhong号:生信学习者Xiao hong书:生信学习者知hu:生信学习者CDSN:生信学习者2介绍针对某个科学问题...比值几率表示单位预测变量变化时响应变量的几率的乘性变化。在本例中,不适合。...区分混合线性模型中的随机效应和固定效应是一个重要的概念。固定效应是具有特定水平的变量,而随机效应捕捉了由于分组或聚类引起的变异性。比如下方正在探究尿蛋白对来自不同患者的GFR的影响。...比值几率表示单位预测变量变化时响应变量的几率的乘性变化。在本例中,不适合。...Python、SPSS实现)混合线性模型介绍--Wiki广义估计方程中工作相关矩阵的选择及R语言代码在Rstudio 中使用pythonAn Introduction to Linear Mixed Effects
在撰写本文时,ggplot2涉及在CRAN上的超过2,000个包和其他地方的更多包!在包中使用ggplot2编程增加了几个约束,特别是如果你想将包提交给CRAN。...尤其是在R包中编程改变了从ggplot2引用函数的方式,以及在aes()和vars()中使用ggplot2的非标准求值的方式。...有时候在开发R包时为了保证正常运行,不得不将依赖包列入Depdens。...常规任务最佳实践 使用ggplot2可视化一个对象 ggplot2在包中通常用于可视化对象(例如,在一个plot()-风格的函数中)。.../ 234, "r" = 25 / 234 ), class = "discrete_distr" ) R中需要的类都有plot()方法,但想要依赖一个单一的plot()为你的每个用户都提供他们所需要的可视化需求是不现实的
并且在1.21中完善了windows系统下的extension的bug。...整体看起来效果还是非常不错的,开发者在整体上还是保留了Rstudio和visual studio中对于View()这个函数的配置,还在此基础上添加了search功能,此外对Rshiny可视化的支持也非常棒...二 在visual studio code中下载R和R LSP client两个extension R extension作为基础的R语言插件,R LSP client作为代码编写时函数提示的辅助工具。...▶ pip install radian 四 在R中安装languageserver和jsonlite R LSP client需要借助languageserver实现函数的智能识别,R session...中运行的话,则会出现R session watcher不启用的状况,data和plot的review窗口则会自动调用自身gui所带的review窗口,以在windows中选择radian.exe路径为例
写在前面:之前我对于groupby一直都小看了,而且感觉理解得不彻底,虽然在另外一篇文章中也提到groupby的用法,但是这篇文章想着重地分析一下,并能从自己的角度分析一下groupby这个好东西~...OUTLINE 根据表本身的某一列或多列内容进行分组聚合 通过字典或者Series进行分组 根据表本身的某一列或多列内容进行分组聚合 这个是groupby的最常见操作,根据某一列的内容分为不同的维度进行拆解...比如按照key1列,可以分为a和b两个维度,按照key2列可以分为one和two两个维度,最后groupby这两列之后的结果就是四个group。...问题:我想知道这五名同学对水果和化妆品的平均喜爱程度是什么样的?...,在groupby之后所使用的聚合函数都是对每个group的操作,聚合函数操作完之后,再将其合并到一个DataFrame中,每一个group最后都变成了一列(或者一行)。
分组集的定义 是多个分组的并集,用于在一个查询中,按照不同的分组列对集合进行聚合运算,等价于对单个分组使用"UNION ALL",计算多个结果集的并集。...分组集种类 SQL Server的分组集共有三种 GROUPING SETS, CUBE, 以及ROLLUP, 其中 CUBE和ROLLUP可以当做是GROUPING SETS的简写版 GROUPING...并且更加的 高效,解析存储一条SQL于语句 GROUP SETS示例 我们以Customers表为例,其内容如下: 我们先分别对城市和省份进行分组,统计出他们的数量 SELECT 城市,NULL 省份,...这样不仅减少了代码,而且这样的效率会比UNION ALL的效率高。通常GROUPING SETS使用在组合分析中。...,其作用是对每个列先进行一次分组,并且对第一列的数据在每个组内还进行一次汇总,最后对所有的数据再进行一次汇总,所以相比GROUPING SETS会多了个所以数据的汇总。
方案 在一个新的 R 会话中使用 search() 可以查看默认加载的包。...#> [19] "package:datasets" "package:methods" #> [21] "Autoloads" "package:base" 以下提供的函数能够列出包中的函数和对象...showPackageContents <- function(packageName) { # 获取特定包所有内容的列表 funlist 的东西 idx <- grep("<-", funlist) if (length(idx) !...qr.resid qr.solve qr.X quarters quarters.Date quarters.POSIXt quit R_system_version R.home R.Version
order by和group by这两个要十分注意,因为一不小心就会产生文件内排序,即file sort,这个性能是十分差的。下面来看具体的案例分析。...第二个可以用到索引,不会产生filesort,是因为,虽然前面的age是范围,但是order by的又是从age开始,带头大哥在。...执行计划 奇了怪了,带头大哥在,也没有范围,为啥就出现了filesort了呢? 这是因为age是降序,birth又是升序,一升一降,就会导致索引用不上,就会产生filesort了。...读取行指针和order by的列, 对它们排序,然后扫描排好序的表,再从磁盘中取出数据来。 4.1之后的版本,叫单路排序,只进行一次I/O。 先将数据从磁盘读到内存中,然后在内存中排序。...2. group by: group by 其实和order by一样,也是先排序,不过多了一个分组,也遵从最佳左前缀原则。
概率函数为f(k;r,p)=choose(k+r-1,r-1)*p^r*(1-p)^k, 当r=1时这个特例分布是几何分布 rnbinom(n,size,prob,mu) 其中n是需要产生的随机数个数,...size是概率函数中的r,即连续成功的次数,prob是单词成功的概率,mu未知.....,即dgeom(0,0.2)=0.2,以上的二项分布和负二项分布也是如此。...mean+3sd)几乎是在肯定的。...Gamma分布中的参数α,称为形状参数(shape parameter),即上式中的s,β称为尺度参数(scale parameter)上式中的a E(x)=s*a, Var(x)=s*a^2.
我们用R做数据处理的时候,经常要对数据的格式进行变换。例如将数据框(dataframe)转换成列表(list),或者反过来将列表转换成数据框。...那么今天小编就给大家介绍一对R函数来实现这样的功能。 这一对函数就叫做stack和unstack。从字面意思上来看就是堆叠和去堆叠,就像下面这张图展示的这样。...那么R里面这两个函数具体可以实现什么样的功能呢?下面这张图可以帮助大家来理解。unstack就是根据数据框的第二列的分组信息,将第一列的数据划分到各个组,是一个去堆叠的过程。...df = PlantGrowth unstacked_df = unstack(df) unstacked_df 结果如下,因为这里ctrl,trt1和trt2中的样本刚好都是10个,所以这里结果看上去还像是一个数据框...,但是当group这个分组变量里面,每组的数目不一样的时候,你就会发现结果其实是一个列表。
概念解释 PDF:概率密度函数(probability density function), 在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数...PMF : 概率质量函数(probability mass function), 在概率论中,概率质量函数是离散随机变量在各特定取值上的概率。...CDF : 累积分布函数 (cumulative distribution function),又叫分布函数,是概率密度函数的积分,能完整描述一个实随机变量X的概率分布。 二....,都可以定义它的累积分布函数,有时简称为分布函数。...另外,在现实生活中,有时候人们感兴趣的是随机变量落入某个范围内的概率是多少,如掷骰子的数小于3点的获胜,那么考虑随机变量落入某个区间的概率就变得有现实意义了,因此引入分布函数很有必要。 2.
领取专属 10元无门槛券
手把手带您无忧上云