在Python中计算n-gram的逐点互信息(PMI)得分,可以使用自然语言处理库NLTK和NumPy。以下是一个简单的示例代码:
import nltk
from nltk.util import ngrams
from collections import Counter
import numpy as np
def pmi_scorer(text, n=2):
# 计算n-gram
ngram_list = list(ngrams(nltk.word_tokenize(text), n))
# 计算n-gram出现次数
ngram_counter = Counter(ngram_list)
# 计算n-gram总数
total_ngrams = sum(ngram_counter.values())
# 计算每个n-gram的PMI得分
pmi_scores = {}
for ngram, count in ngram_counter.items():
p_x = count / total_ngrams
p_y = 0
p_xy = 0
for i, word in enumerate(ngram):
if i == 0:
p_y = sum([1 for ngram_list in ngram_counter.keys() if word in ngram_list]) / total_ngrams
else:
p_xy += ngram_counter[ngram] / total_ngrams
pmi = np.log2((p_xy * total_ngrams) / (p_x * p_y))
pmi_scores[ngram] = pmi
return pmi_scores
text = "Python是一种解释型、高级、通用的编程语言。"
pmi_scores = pmi_scorer(text)
print(pmi_scores)
在这个示例中,我们使用了NLTK库来分词,然后计算了2-gram的PMI得分。PMI得分越高,表示这个n-gram的关联性越强。
推荐的腾讯云相关产品:
产品介绍链接地址:
领取专属 10元无门槛券
手把手带您无忧上云