首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在Python中处理非常大的数字

在Python中处理非常大的数字时,可以使用内置的decimal模块。decimal模块提供了高精度的十进制浮点数运算,可以避免浮点数运算中的精度损失。

以下是一个使用decimal模块处理大数字的示例:

代码语言:python
代码运行次数:0
复制

from decimal import Decimal, getcontext

getcontext().prec = 50 # 设置精度

a = Decimal('1.2345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Python数据分析(中英对照)·Ranges 范围

范围是不可变的整数序列,通常用于for循环。 Ranges are immutable sequences of integers,and they are commonly used in for loops. 要创建一个范围对象,我们键入“range”,然后输入范围的停止值。 To create a range object, we type "range" and then we put in the stopping value of the range. 现在,我们刚刚创建了一个范围对象,但是如果您想查看该对象的实际内容,那么这就没有多大帮助了。 Now, we’ve just created a range object, but this is less helpful if you would like to see what’s the actual content of that object. 虽然,我们通常不会在Python程序中这样做,但为了真正看到该范围对象的内容,我们可以在这种情况下将其转换为列表。 Although, we wouldn’t typically do this in a Python program,for us to really see the content of that range object,so what we can do in this case is we can turn it into a list. 所以如果我们说“范围5列表”,我们会看到范围对象由五个数字组成,从0到4。 So if we say "list of range 5," we’ll see that the range object consists of five numbers, from 0 to 4. 范围的输入参数是停止值。 The input argument to range is the stopping value. 记住,Python在到达停止值之前停止。 And remember, Python stops before it hits the stopping value. 这就是为什么范围5实际上不包含数字5。 That’s why range 5 does actually not contain the number 5. 我们可以为range函数提供额外的参数。 We can provide additional arguments to the range function. 例如,我们可以提供起点,也可以定义步长。 For example, we can provide the starting point,and we can also define the step size. 所以如果我们输入“range1到6”,在这种情况下,我们得到一个range对象,它从1开始,到5结束。 So if we type "range 1 to 6," in that case,we get a range object which starts at 1 and ends at 5. 如果我们想以2为增量,我们可以这样做。 If we wanted to go in increments of two, we could do something like this. 我们可以从1开始,一直到13——13号,不包括它本身——我们可以分两步走。 We could start from 1, go up to 13– number 13,not itself included– and we could go in steps of two. 在本例中,我们得到一个从1开始到11结束的范围对象。 In this case, we get a range object that starts at 1 and ends at 11. 通常,当我们在Python程序中使用范围对象时,我们不会首先将它们转换为列表。 Typically when we use range objects in our Python programs,we do not first turn them into lists. 我们在这里这样做只是为了让我们更容易理解这些对象的作用。 We’ve done it here only so that it’s easier for us to understand what these objects do. 当然,您可以在for循环上下文中使用list对象,但由于以下原因,它是有问题的。 You can certainly use a list object in a

04
  • Python数据分析(中英对照)·Introduction to NumPy Arrays NumPy 数组简介

    NumPy is a Python module designed for scientific computation. NumPy是为科学计算而设计的Python模块。 NumPy has several very useful features. NumPy有几个非常有用的特性。 Here are some examples. 这里有一些例子。 NumPy arrays are n-dimensional array objects and they are a core component of scientific and numerical computation in Python. NumPy数组是n维数组对象,是Python中科学和数值计算的核心组件。 NumPy also provides tools for integrating your code with existing C,C++, and Fortran code. NUMPY还提供了将代码与现有C、C++和FORTRAN代码集成的工具。 NumPy also provides many useful tools to help you perform linear algebra, generate random numbers, and much, much more. NumPy还提供了许多有用的工具来帮助您执行线性代数、生成随机数等等。 You can learn more about NumPy from the website numpy.org. 您可以从网站NumPy.org了解更多关于NumPy的信息。 NumPy arrays are an additional data type provided by NumPy,and they are used for representing vectors and matrices. NumPy数组是NumPy提供的附加数据类型,用于表示向量和矩阵。 Unlike dynamically growing Python lists, NumPy arrays have a size that is fixed when they are constructed. 与动态增长的Python列表不同,NumPy数组的大小在构造时是固定的。 Elements of NumPy arrays are also all of the same data type leading to more efficient and simpler code than using Python’s standard data types. NumPy数组的元素也都是相同的数据类型,这使得代码比使用Python的标准数据类型更高效、更简单。 By default, the elements are floating point numbers. 默认情况下,元素是浮点数。 Let’s start by constructing an empty vector and an empty matrix. 让我们先构造一个空向量和一个空矩阵。 By the way, don’t worry if you’re not that familiar with matrices. 顺便说一句,如果你对矩阵不太熟悉,别担心。 You can just think of them as two-dimensional tables. 你可以把它们想象成二维表格。 We will always use the following way to import NumPy into Python– import numpy as np. 我们将始终使用以下方法将NumPy导入Python——将NumPy作为np导入。 This is the import we will always use. 这是我们将始终使用的导入。 We’re first going to define our first zero vector using the numpy np.zeros function. 我们首先要用numpy np.zeros函数定义我们的第一个零向量。 In this case, if we would like to have five elements in the vector,we can just type np.zeros and place the number 5 inside the parentheses. 在这种情况下,如果我们想在向量中有五个元素,我们可以只键入np.zero并将数字5放在括号内。 We can defin

    02
    领券