首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

- 从长度为m的int数组中随机取出n个元素,每次取的元素都是之前未取过的

题目:从长度为m的int数组中随机取出n个元素,每次取的元素都是之前未取过的 Fisher-Yates洗牌算法是由 Ronald A.Fisher和Frank Yates于1938年发明的,后来被Knuth...等概率: 洗牌算法有些人也称等概率洗牌算法,其实发牌的过程和我们抽签一样的,大学概率论讲过抽签是等概率的,同样洗牌算法选中每个元素是等概率的。...用洗牌算法思路从1、2、3、4、5这5个数中,随机取一个数 4被抽中的概率是1/5 5被抽中的概率是1/4 * 4/5 = 1/5 2被抽中的概率是1/3 * 3/4 *...(t)); } } ---- Knuth洗牌算法 在上面的介绍的发牌过程中, Knuth 和 Durstenfeld 在Fisher 等人的基础上对算法进行了改进,在原始数组上对数字进行交互,...该算法的基本思想和 Fisher 类似,每次从未处理的数据中随机取出一个数字,然后把该数字放在数组的尾部,即数组尾部存放的是已经处理过的数字。

1.7K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    2022-12-22:给定一个数字n,代表数组的长度, 给定一个数字m,代表数组每个位置都可以在1~m之间选择数字, 所有长度为n的数组中,最长递增子序列长度为

    2022-12-22:给定一个数字n,代表数组的长度,给定一个数字m,代表数组每个位置都可以在1~m之间选择数字,所有长度为n的数组中,最长递增子序列长度为3的数组,叫做达标数组。返回达标数组的数量。...1 n m 的时候没有取模的逻辑,因为非重点。来自微众银行。...// n : 一共的长度!// m : 每一位,都可以在1~m中随意选择数字// 返回值:i..... 有几个合法的数组!...{ ans += zuo(i + 1, f, s, cur, n, m); } } return ans;}// 正式方法// 需要看最长递增子序列!...// 尤其是理解ends数组的意义!fn number2(n: i32, m: i32) -> i32 { //repeat(vec!

    2.1K20

    一日一技:在Python里面如何获取列表的最大n个元素或最小n个元素?

    我们知道,在Python里面,可以使用 max和 min获得一个列表的最大、最小的元素: a = [4, 2, -1, 8, 100, -67, 25]max_value = max(a)min_value...= min(a) print(max_value)print(min_value) 运行效果如下图所示: 那么问题来了,如何获取最大的3个元素和最小的5个元素?...(f'最大的三个元素:{a[-3:]}') 那有没有其他办法呢?...它会把原来的列表转换成一个堆,然后取最大最小值。 需要注意,当你要取的是前n大或者前n小的数据时,如果n相对于列表的长度来说比较小,那么使用 heapq的性能会比较好。...但是如果n和列表的长度相差无几,那么先排序再切片的性能会更高一些。

    8.8K30

    我有两个列表,现在需要找出两个列表中的不同元素,怎么做?

    一、前言 前几天在帮助粉丝解决问题的时候,遇到一个简单的小需求,这里拿出来跟大家一起分享,后面再次遇到的时候,可以从这里得到灵感。...二、需求澄清 问题如下所示: 三、实现过程 这里【听风】一开始给了一个集合求差集的方法,差强人意。 不过并没有太满足要求,毕竟客户的需求是分别需要两个列表中不重复的元素。...后来【听风】又给了一个方法,如下所示: 这次是完全贴合要求了,代码运行之后,可以得到预期的效果: 这里再补充一个小知识点,提问如下图所示: 后来【听风】给了一个方法,如下图所示: 原来列表转df...是这样玩的,接下来你就可以把数据导出为Excel等其他格式了,不再赘述。...这篇文章主要盘点一个Python实用的案例,这个案例可以适用于实际工作中文件名去重等工作,感谢【听风】大佬给予耐心指导。

    3.3K10

    2022-12-22:给定一个数字n,代表数组的长度,给定一个数字m,代表数组每个位置都可以在1~m之间选择数字,所有长度为n的

    2022-12-22:给定一个数字n,代表数组的长度, 给定一个数字m,代表数组每个位置都可以在1~m之间选择数字, 所有长度为n的数组中,最长递增子序列长度为3的数组,叫做达标数组。...返回达标数组的数量。 1 n <= 500, 1 m <= 10, 500 * 10 * 10 * 10, 结果对998244353取模, 实现的时候没有取模的逻辑,因为非重点。...// n : 一共的长度! // m : 每一位,都可以在1~m中随意选择数字 // 返回值:i..... 有几个合法的数组!...需要看最长递增子序列!...// 尤其是理解ends数组的意义! fn number2(n: i32, m: i32) -> i32 { //repeat(vec!

    90150

    python合并多个不同样式的excel的sheet到一个文件中

    python实战:使用python实现合并多个excel到一个文件,一个sheet和多个sheet中合并多个不同样式的excel的sheet到一个文件中主要使用的库为openpyxl1、安装openpyxl...并导入pip install openpyxl安装完成后,可以通过命令行窗口测试是否安装成功;图片导入openpyxl:import openpyxl使用openpyxl合并excel:1、创建一个excel...write_only=True)2、加载已有文件r_wb = openpyxl.load_workbook(filename=f)3、读取sheet表for sheet in r_wb:4、获取所有行并添加到新文件中:...in sheet.rows:w_rs.append(row)5、保存文件:wb.save('H:/openpyxl.xlsx')完整代码示例:def megreFile(): ''' 合并多个不同样式的...excel的sheet到一个文件中 ''' import openpyxl #读写excel的库,只能处理xlsx #创建一个excel,没有sheet wb = openpyxl.Workbook

    2.5K30

    从一个集合中查找最大最小的N个元素——Python heapq 堆数据结构

    Top N问题在搜索引擎、推荐系统领域应用很广, 如果用我们较为常见的语言,如C、C++、Java等,代码量至少也得五行,但是用Python的话,只用一个函数就能搞定,只需引入heapq(堆队列)这个数据结构即可...1)、heapq.nlargest(n, iterable[, key]) 从迭代器对象iterable中返回前n个最大的元素列表,其中关键字参数key用于匹配是字典对象的iterable,用于更复杂的数据结构中...2)、heapq.nsmallest(n, iterable[, key]) 从迭代器对象iterable中返回前n个最小的元素列表,其中关键字参数key用于匹配是字典对象的iterable,用于更复杂的数据结构中...现在有几个需要注意的地方: 1)heapq.heapify(iterable):可以将一个列表转换成heapq 2)在Top N问题中,如果N=1,则直接用max(iterable)/min(iterable...3)如果N很大,接近集合元素,则为了提高效率,采用sort+切片的方式会更好,如: 求最大的N个元素:sorted(iterable, key=key, reverse=True)[:N] 求最小的N个元素

    1.4K100

    用于从数组中删除第一个元素的 Python 程序

    为了删除数组的第一个元素,必须考虑的索引为 0,因为任何数组中第一个元素的索引始终为 0。与从数组中删除最后一个元素一样,从数组中删除第一个元素可以使用相同的技术进行处理。...让我们将这些技术应用于数组的第一个元素的删除。我们现在将讨论用于从数组中连续一个接一个地删除第一个元素的方法和关键字。...使用 pop() 方法 pop() 方法用于删除 Python 编程语言中数组、列表等的元素。此机制通过使用必须从数组中删除或删除的元素的索引来工作。 因此,要删除数组的第一个元素,请考虑索引 0。...此关键字还用于使用其索引删除数组的最后一个元素或任何元素。因此,我们使用此关键字来删除 Python 中的特定对象或元素。...语法 variable = n.delete(arr, first_index) 例 在这个例子中,我们将讨论使用 Numpy 模块的 delete() 方法删除数组的第一个元素的过程。

    27630

    Python组合列表中多个整数得到最小整数(一个算法的巧妙实现)

    '''程序功能: 给定一个含有多个整数的列表,将这些整数任意组合和连接, 返回能得到的最小值。...代码思路: 将这些整数变为相同长度(按最大的进行统一),短的右侧使用个位数补齐 然后将这些新的数字升序排列,将低位补齐的数字删掉, 把剩下的数字连接起来,即可得到满足要求的数字'''...def mergeMinValue(lst): # 生成字符串列表 lst = list(map(str, lst)) # 最长的数字长度 m = len(max(lst, key=...len)) # 根据原来的整数得到新的列表,改造形式 newLst = [(i,i+i[-1]*(m-len(i))) for i in lst] # 根据补齐的数字字符串进行排序...newLst.sort(key=lambda item:item[1]) # 对原来的数字进行拼接 result = ''.join((item[0] for item in newLst))

    2.8K60

    Python数据结构与算法-在M个数中找K个最小的数

    A,然后下一个数跟A对比,比A大则不要,比A小则入选,如此循环;时间复杂度是o(m*k) 4 最后一种是对方法3的一个优化,在找数组K个数中最大数时,最好的时间复杂度是用大根堆的方式,时间复杂度是logk...代码思路: 对前k个数,进行建立大根堆;建立大根堆时,从(k-1)/2的位置开始向上进行调整; 然后对后面m-k个数据,一个数据一个数据的与堆的根节点进行大小对比,比根节点小的,用这个值替换根节点,然后在从根节点对堆进行调整...这样最后堆里的内容就是要输出的内容 下面是第四种方式的代码: ''' 查找最小的k个元素 题目:输入n个整数,输出其中最小的k个。... len_m: print None #如果长度相当直接返回 else: if k==len_m: print...m else: #否则先对前k个节点,从后向前调整 heap = m[:k] index = (k-1)/2

    1.4K10

    2023-05-01:给你一个整数 n , 请你在无限的整数序列 中找出并返回

    2023-05-01:给你一个整数 n ,请你在无限的整数序列 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...中找出并返回第 n 位上的数字。...1 n n = 11输出:0解释:第 11 位数字在序列 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ......2.实现函数 findNthDigit,其输入为整数 n,表示要查找的数字在整数序列中的位置。根据 under 数组,找到包含第 n 个数字的区间长度 len,并返回调用子函数 number 的结果。...4.在 main 函数中,定义一个整数变量 n 表示要查找的数字在整数序列中的位置,调用 findNthDigit 函数查找第 n 个数字,并输出结果。...时间复杂度和空间复杂度如下:1.findNthDigit 函数中的循环需要遍历数组 under,时间复杂度为 O(1) 平均时间复杂度为 O(log n);number 函数实现了一个递归结构,每次递归除去常数项的时间复杂度为

    43300

    2022-06-11:注意本文件中,graph不是邻接矩阵的含义,而是一个二部图。 在长度为N的邻接矩阵matrix中,所有的点有N个,matrix

    2022-06-11:注意本文件中,graph不是邻接矩阵的含义,而是一个二部图。...在长度为N的邻接矩阵matrix中,所有的点有N个,matrixi表示点i到点j的距离或者权重,而在二部图graph中,所有的点有2*N个,行所对应的点有N个,列所对应的点有N个。...而且认为,行所对应的点之间是没有路径的,列所对应的点之间也是没有路径的!答案2022-06-11:km算法。代码用rust编写。...[]; // dfs过程中,碰过的点! let mut x: Vec = vec![]; let mut y: Vec = vec!...[]; // 降低的预期! // 公主上,打一个,降低预期的值,只维持最小! let mut slack: Vec = vec!

    72110

    python 在排序数组中查找元素的第一个和最后一个位置 多种解法

    二分查找:基于二分查找的算法可以在 O(log n) 的时间复杂度内解决该问题。具体实现方式是,先使用二分查找找到该元素的位置,然后向左和向右扩展,直到找到第一个和最后一个位置。...target and nums[rightIdx] == target: return [leftIdx, rightIdx] return [-1, -1] 线性扫描:线性扫描的思路是从左到右遍历数组...,记录第一次出现目标值的位置,然后继续遍历数组,直到找到最后一次出现目标值的位置,代码如下: def searchRange(nums, target): first, last = -1, -...if first == -1: first = i last = i return [first, last] 使用 Python...内置函数:Python 中有内置函数 bisect_left 和 bisect_right 可以帮助我们实现二分查找。

    8310
    领券