可能是由于以下原因之一:
pip install numpy scipy
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple yhat
以上是一般情况下解决安装yhat时出现问题的常见方法。然而,由于yhat是一个第三方库,具体解决方法可能因个人环境而异。建议查阅yhat的官方文档或者社区支持来获取更具体的解决方案。
腾讯云相关产品和产品介绍链接地址:
安装完Anaconda后配置清华镜像 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --set show_channel_urls yes
分享一篇关于聚类的文章:10种聚类算法和Python代码。文末提供jupyter notebook的完整代码获取方式。
笔记本上安装了2.7和3.5两个版本的python,在使用3.5版本的pip安装keras时出现了failed to create process错误。解决方法如下: 1.由于我在环境变量中同时配置了2.7和3.5的路径,所以我可以直接在命令行下执行python3来启动3.5版本的python; 2.通过python3来启动pip,在命令行中输入python3 -m pip install keras,成功安装上keras。
为什么要用 Python 呢? 我喜欢用 Python 来处理机器学习问题的一个重要原因是 Python 吸取了 R 社区的优点,同时还将其进行了优化打包。我一直认为编程语言的能力取决于它的软件库,因此本文将着重介绍我经常使用的一些关于机器学习算法的 R 包和 Python 中的替代包。 glm, knn, randomForest, e1071 -> scikit-learn R 语言的一个缺点是每个机器学习算法都有一个相应的软件包,这大大提升了用户的学习成本。Python 中的scikit-le
Pytorchtask·1——PyTorch的基本概念1. 什么是PyTorch,为什么选择PyTorch2. 配置Python环境3. 准备Python管理器4. Pytroch的安装5.PyTorch基础概念6. 通用代码实现流程(实现一个深度学习的代码流程)
最近看到一篇介绍聚类算法的文章(来自海豚数据科学实验室),总结了10种聚类算法及Python实现
本文介绍了如何利用Keras框架开发基于序列数据的循环神经网络模型,并给出了一个序列到序列预测问题的实例。首先介绍了如何定义一个简单的编码器-解码器模型,然后利用Keras的Sequential模型定义了一个基于LSTM的编码器-解码器模型,最后利用Keras的Dataset API从数据集中加载数据并划分训练集和测试集。在划分数据集之后,使用Keras的Sequential模型定义了一个基于LSTM的编码器-解码器模型,并使用Keras的Keras Tuner对模型进行超参数调优。最后,使用Keras的Keras Tuner对模型进行超参数调优,并使用测试集对模型进行评估。实验结果表明,该模型在序列到序列预测问题上的性能优于传统的循环神经网络模型。
来源:海豚数据科学实验室 转自:数据分析1480 今天给大家分享一篇关于聚类的文章,10种聚类介绍和Python代码。 聚类或聚类分析是无监督学习问题。它通常被用作数据分析技术,用于发现数据中的有趣模式,例如基于其行为的客户群。有许多聚类算法可供选择,对于所有情况,没有单一的最佳聚类算法。相反,最好探索一系列聚类算法以及每种算法的不同配置。在本教程中,你将发现如何在 python 中安装和使用顶级聚类算法。 完成本教程后,你将知道: 聚类是在输入数据的特征空间中查找自然组的无监督问题。 对于所有数据集,有
来源:海豚数据科学实验室本文约7000字,建议阅读14分钟本文将介绍一篇关于聚类的文章,10种聚类介绍和Python代码。 聚类或聚类分析是无监督学习问题。它通常被用作数据分析技术,用于发现数据中的有趣模式,例如基于其行为的客户群。有许多聚类算法可供选择,对于所有情况,没有单一的最佳聚类算法。相反,最好探索一系列聚类算法以及每种算法的不同配置。在本教程中,你将发现如何在 python 中安装和使用顶级聚类算法。 完成本教程后,你将知道: 聚类是在输入数据的特征空间中查找自然组的无监督问题。 对于所有数据集,
像长短期记忆(Long Short-Term Memory ) LSTM 递归神经网络这样的神经网络几乎可以完美地模拟多个输入变量的问题。
聚类或聚类分析是无监督学习问题。它通常被用作数据分析技术,用于发现数据中的有趣模式,例如基于其行为的客户群。有许多聚类算法可供选择,对于所有情况,没有单一的最佳聚类算法。相反,最好探索一系列聚类算法以及每种算法的不同配置。在本教程中,你将发现如何在 python 中安装和使用顶级聚类算法。
Prophet是Facebook 开源一款基于 Python 和 R 语言的数据预测工具。Facebook 表示,Prophet 相比现有预测工具更加人性化,并且难得地提供 Python 和R的支持。它生成的预测结果足以和专业数据分析师媲美。
本文为大家介绍了如何在Python中使用由Facebook开发的Prophet库进行自动化的时间序列预测,以及如何评估一个由Prophet库所搭建的时间序列预测模型的性能。
笔者在运行 import tensorflow as tf时出现下面的错误,但在运行import tensorflow时没有出错。
当我们的爬虫程序已经完成使命,帮我们抓取大量的数据。你内心也许会空落落的。或许你会疑惑,自己抓取这些数据有啥用?如果要拿去分析,那要怎么分析呢?
这篇文章是关于pandasql,Yhat 写的一个模拟 R 包 sqldf 的Python 库。这是一个小而强大的库,只有358行代码。pandasql 的想法是让 Python 运行 SQL。对于那些来自 SQL 背景或仍然「使用 SQL 思考」的人来说,pandasql是一种利用两种语言优势的好方式。
神经网络诸如长短期记忆(LSTM)递归神经网络,几乎可以无缝地对多变量输入问题进行建模。
神经网络诸如长短期记忆(LSTM)递归神经网络,可以很轻松地对多变量输入问题进行建模。
详细的推导可以参见:http://blog.csdn.net/weiyongle1996/article/details/73727505
我喜欢用 Python 来处理机器学习问题的一个重要原因是 Python 吸取了 R 社区的优点,同时还将其进行了优化打包。我一直认为编程语言的能力取决于它的软件库,因此本文将着重介绍我经常使用的一些关于机器学习算法的 R 包和 Python 中的替代包。
本文利用R语言的独立成分分析(ICA)、谱聚类(CS)和支持向量回归 SVR 模型帮助客户对商店销量进行预测。首先,分别对商店销量的历史数据进行了独立成分分析,得到了多个独立成分;其次,利用谱聚类方法将商店销量划分成了若干类,并将每个类的特征进行了提取;最后,利用 SVR模型对所有的商店销量进行预测。实验结果表明,利用 FastICA、 CS和 SVR模型能够准确预测商店销量。
Statsmodels库是Python中一个强大的统计分析库,包含假设检验、回归分析、时间序列分析等功能,能够很好的和Numpy和Pandas等库结合起来,提高工作效率。
原文链接:https://cuijiahua.com/blog/2017/11/ml_11_regression_1.html
长短期记忆递归神经网络具有学习长的观察序列的潜力。
时间序列预测是一个过程,获得良好预测的唯一方法就是练习这个过程。
空气污染程度以地面臭氧浓度表示。根据风速和温度等气象测量结果,是否会在明天达到足以发出公众空气污染警告的高度
选自machine learning mastery 机器之心编译 参与:Jane W、Panda logistic 回归是一种著名的二元分类问题的线性分类算法。它容易实现、易于理解,并在各类问题上有不错的效果,即使该方法的原假设与数据有违背时。 在本教程中,你将了解如何在 Python 中实现随机梯度下降的 logistic 回归算法。学完本教程后,你将了解: 如何使用 logistic 回归模型进行预测。 如何使用随机梯度下降(stochastic gradient descent)来估计系数(coe
如果说 Python 能够让你就此起飞的话,那么使用 f2py 能让你在一定程度上飞的更高更远。
本文介绍了如何用XGBoost做时间序列预测,包括将时间序列转化为有监督学习的预测问题,使用前向验证来做模型评估,并给出了可操作的代码示例。
从头开始写机器学习算法能够获得很多经验。当你最终完成时,你会惊喜万分,而且你明白这背后究竟发生了什么。
Prophet已经创建了所需的模型并匹配数据。Prophet在默认情况下为我们创建了变化点并将它们存储在.changepoints中。默认情况下,Prophet在初始数据集的80%中添加了25个变化点。在初始化prophet时,可以使用n_changepoints参数更改点的数量(例如,model= prophet (n_changepoints=30))
TI-ONE平台安装cuda指引:https://cloud.tencent.com/developer/article/1845781
我们常用的激活函数有sigmoid,tanh,ReLU这三个函数,我们都来学习学习吧。
长短期记忆模型(LSTM)是一类典型的递归神经网络,它能够学习观察所得的序列。
1.异常值和缺失值的处理 这绝对是数据分析时让所有人都头疼的问题。异常和缺失值会破坏数据的分布,并且干扰分析的结果,怎么处理它们是一门大学问,而我根本还没入门。 (1)异常值 3 ways to remove outliers from your data https://ocefpaf.github.io/python4oceanographers/blog/2015/03/16/outlier_detection/ 提供了关于如何对时间序列数据进行异常值检测的方法,作者认为移动中位数的方法最好,代码
在实际的工作中,数据科学家们不仅要学会如何实用工具,还要懂得如何与同事合作。The Yhat Blog这篇文章探讨了在实际的数据建模和数据处理的过程中数据科学家和数据工程师应该如何处理好关系顺利地完成项目的问题。它引用“摩西十诫”的典故,提出了给数据处理者的五个“诫律”。我们一起来参考一下!
Xlearn是你面对结构化数据分类/回归任务时,除了xgboost/lightgbm/catboost之外,又不想搞训练很慢的深度学习模型时,可以尝试考虑的一个能够快速落地的机器学习baseline基准。
AI研习社按:本文作者 Jason Brownlee 为澳大利亚知名机器学习专家、教育者,对时间序列预测尤有心得。原文发布于其博客。AI研习社崔静闯、朱婷编译。 神经网络算法利用了随机性,比如初始化随机权重,因此用同样的数据训练同一个网络会得到不同的结果。 初学者可能会有些懵圈,因为算法表现得不太稳定。但实际上它们就是这么设计的。随机初始化可以让网络通过学习,得到一个所学函数的很好的近似。 然而, 有时候用同样的数据训练同一个网络,你需要每次都得到完全相同的结果。例如在教学和产品上。 在这个教程中,你会学到
3.根据自己的需求。安装python的制定版本。本次下载的是python 3.6.2
https://github.com/lilihongjava/prophet_demo/tree/master/diagnostics
摘要:本文分别介绍了线性回归、局部加权回归和岭回归,并使用python进行了简单实现。
局部加权线性回归(Locally Weighted Linear Regression,LWLR),针对于线性回归存在的欠 拟合现象,可以引入一些偏差得到局部加权线性回归对算法进行优化。
由于没有一个成熟的理论来解释神经网络,所以配置神经网络通常是困难的,经常被同学们调侃为“炼丹”。
前面的文章已经介绍了在Windows上安装Python2和Python3了,现在介绍Linux系统上的安装。Ubuntu16.04上默认安装了Python2.7和Python3.5,Redhat和CentOS上默认安装了Python2.7,注意,不管我们是否要使用默认安装的版本,都不要卸载默认的Python. Ubuntu, Redhat,CentOS的使用占了Linux系统发行版中的大部分,在这些系统上使用Python开发可以直接用默认安装的版本,但是有时候我们需要指定版本,如Redhat中没有Python3,使用Django框架最新LTS版Django2.2需要Python3.6以上版本等.在默认的版本不满足我们的需要时,就需要我们自己安装了,所以这篇文章就是介绍在Ubuntu16.04上安装Python3.7.3的步骤,其他版本的安装步骤类似。
本篇文章将总结时间序列预测方法,并将所有方法分类介绍并提供相应的python代码示例,以下是本文将要介绍的方法列表:
笔者:受alphago影响,想看看深度学习,但是其在R语言中的应用包可谓少之又少,更多的是在matlab和python中或者是调用。整理一下目前我看到的R语言的材料:
我个人在尝试在我的Linux和Windows机器上安装Python时曾遇到过各种各样的问题。一般在出问题之前安装总是很顺利。出了问题之后要么是兼容性问题,要么是关于某种依赖性缺失的问题。
领取专属 10元无门槛券
手把手带您无忧上云