可能是由于以下原因:
为了解决这个问题,可以考虑以下方法:
腾讯云相关产品和产品介绍链接地址:
开源大数据OLAP组件,可以分为MOLAP和ROLAP两类。ROLAP中又可细分为MPP数据库和SQL引擎两类。对于SQL引擎又可以再细分为基于MPP架构的SQL引擎和基于通用计算框架的SQL引擎:
桔妹导读:Presto在滴滴内部发展三年,已经成为滴滴内部Ad-Hoc和Hive SQL加速的首选引擎。目前服务6K+用户,每天读取2PB ~ 3PB HDFS数据,处理30万亿~35万亿条记录,为了承接业务及丰富使用场景,滴滴Presto需要解决稳定性、易用性、性能、成本等诸多问题。我们在3年多的时间里,做了大量优化和二次开发,积攒了非常丰富的经验。本文分享了滴滴对Presto引擎的改进和优化,同时也提供了大量稳定性建设经验。
作者简介 许鹏,携程机票大数据基础平台Leader,负责平台的构建和运维。深度掌握各种大数据开源产品,如Spark、Presto及Elasticsearch。著有《Apache Spark源码剖析》一书。本文来自许鹏在〖DAMS 2017中国数据资产管理峰会〗上的分享,首发DBAplus社群(ID:dbaplus)。 现如今大数据一块有很多的开源项目,因此首先搭建平台的难点其实在于如何选择一个合适的技术来做整个平台的架构,第二,因为有业务数据,用了平台之后的话,如何用平台把数据分析出来让用户有很好的交互性的
Presto是由 Facebook 推出的一个基于Java开发的开源分布式SQL查询引擎,适用于交互式分析查询,数据量支持GB到PB字节。Presto本身并不存储数据,但是可以接入多种数据源,并且支持跨数据源的级联查询。
在之前的《大数据开发:OLAP开源数据分析引擎简介》一文当中,我们对主流的一些开源数据分析查询引擎做了大致的介绍,今天的大数据开发分享,我们具体来讲解其中的Presto查询引擎,是什么,为什么会出现,又能够解决什么样的数据处理需求。
现代组织不断从各个来源产生和收集大量数据。数据可能存储在不同的格式、位置,并且在容量、速度和种类上可能存在差异,使用户难以快速提取其中的价值。数据孤岛在许多公司都是存在,为了解决数据孤岛问题,企业可以采取的措施有:数据集成、建立数据共享机制、数据标准化、数据虚拟化等。其中数据虚拟化通常需要一个引擎支持读取多源的数据,且统一访问逻辑;业界解决改场景的引擎有Spark、Presto、Dremio等,本文接下来主要描述Dremio。
强烈推介IDEA2020.2破解激活,IntelliJ IDEA 注册码,2020.2 IDEA 激活码
很久之前,曾经写过一篇 《Presto在大数据领域的实践和探索》 。文中详细讲解了Presto的原理和应用。
以上是在大数据处理方面常用的四种技术原理, 上面这些处理数据的方式极大程度的提高了单位时间内数据处理的能力, 但是其还是没有摆脱数据量和查询时间的线性关系。 于是在OLAP处理方式上, 我们多了一种:
文|叶蓬 【按:此文是与我的《基于大数据分析的安全管理平台技术研究及应用》同期发表在内刊上的我的同事们的作品,转载于此。这些基础性的研究和测试对比分析,对于我们的BDSA技术路线选定大有帮助。】 引言 大数据查询分析是云计算中核心问题之一,自从Google在2006年之前的几篇论文奠定云计算领域基础,尤其是GFS、Map-Reduce、 Bigtable被称为云计算底层技术三大基石。GFS、Map-Reduce技术直接支持了Apache Hadoop项目的诞生。Bigtable和Amazon D
《Presto 分布式SQL查询引擎及原理分析》详细介绍了Presto 的数据模型、技术架构,解释了Presto 对于查询分析有着较高性能。任何SQL引擎,执行过程都是比较复杂的。本篇文章来详细分析 Presto SQL的执行过程以及Presto Connector对索引条件下推良好扩展性技术原理。
准实时分析系统Impala,提供SQL语义,能够为存储在Hadoop的HDFS和Hbase中的PB级大数据提供快速、交互式的SQL查询。传统仓库查询工具Hive底层是基于MapReduce引擎处理,是一个批处理过程,难以满足快速响应的查询,而Impala是基于MPP的查询系统,最大特点就是快速。
在上一章节《你需要的不是实时数仓 | 你需要的是一款强大的OLAP数据库(上)》,我们讲到实时数仓的建设,互联网大数据技术发展到今天,各个领域基本已经成熟,有各式各样的解决方案可以供我们选择。
Airbnb是Hadoop在国内的一个公开资源数据开发和SQL查询工具。它的出现,能给Facebook Presto云技术的发展注入一剂强心剂吗? 7个你不知道的关于Linux的事实 数据驱动型旅游公司Airbnb于周四对外宣布,将把其内部开发的工具Airpal作为公开资源,这一举措将给Facebook开发的Presto在Hadoop SQL查询功能锦上添花。 Presto是Facebook于2013年末作为公开资源赠给Apache的一项内存Hadoop SQL查询技术。Airpal则是基于这项技术的数据
最近很多时候需要将hivesql转化为prestosql ,这里面有很多不能直接复用需要调整func甚至改用其他逻辑。
在实际项目中,HANA平台要求模型运行时间不能超过10秒,但是在大数量和计算逻辑复杂的情况下(例如:SAP中的BKPF和BSEG量表的年数据总量超过20亿条),HANA模型的运行时间基本上都在半分钟以上。在不关联其它表,单单是几个板块的BKPF和BSEG表UNION ALL,运行时间都超过1分钟。鉴于这种情况,项目组对HANA模型是否存在优化空间,进行了分析和探讨,也请教了HANA平台的专家对HANA的优化给出可行性建议。
在大数据时代,SQL作为数据分析的通用语言,其在处理海量数据集时的作用尤为重要。传统的RDBMS在面对TB乃至PB级别的数据时,往往会因性能瓶颈和扩展性限制而显得力不从心。因此,为适应大数据场景,Apache Hive、Presto(现更名为Trino)等专门针对大数据查询优化的工具应运而生,它们不仅保留了SQL的易用性,还引入了诸多创新技术以实现对大规模数据的高效查询。本文将深入剖析Hive、Presto(Trino)的特点、应用场景,并通过丰富的代码示例展示如何在大数据环境中利用这些工具进行高性能SQL查询。
场景描述:今年有个现象,实时数仓的建设突然就被大家所关注。我个人在公众号也写过和转载过几篇关于实时数据仓库建设的文章和方案。
导语 SuperSQL是腾讯自研的下一代大数据自适应计算平台。通过开放融合的架构,实现一套代码高效解决公有云、私有云、内网的任何大数据计算场景问题。我们通过将异构计算引擎/异构存储服务、计算引擎的智能化/自动化、SQL的流批一体、算力感知的智能调度纳入内部系统闭环,给用户提供极简统一的大数据计算体验。用户能够从繁杂的底层技术细节中解脱出来,专注于业务逻辑的实现,像使用“数据库”一样使用“大数据”,实现业务逻辑与底层大数据技术的解耦。 SuperSQL作为腾讯大数据智能计算平台的入口和决策中心,整合不同的大数
OLTP系统强调数据库内存效率,强调内存各种指标的命令率,强调绑定变量,强调并发操作,强调事务性。OLAP系统则强调数据分析,强调SQL执行时长,强调磁盘I/O,强调分区。
公司的sql查询平台提供了HIVE和Presto两种查询引擎来查询hive中的数据,由于presto的速度较快,一般能用presto跑就不用hive跑(有的时候如果使用了hive的UDF就必须用hive了),然而昨天发生了一件血案。
大家好,我是一哥,今天聊一聊OLAP技术,一哥认为好的OLAP引擎应该具备以下三个条件:易开发、易维护、易移植。今天给大家分享一下常见的几种OLAP计算引擎,他们的特性、适用场景,优缺点等,希望对大家在选型应用上有帮助。
Presto是一个开源的分布式SQL查询引擎,适用于交互式分析查询,数据量支持GB到PB字节。 Presto的设计和编写完全是为了解决像Facebook这样规模的商业数据仓库的交互式分析和处理速度的问题。
-coordination and management(协调与管理) -query(查询) -data piping(数据管道) -core hadoop(核心hadoop) -machine learning(机器学习) -nosql database(nosql数据库)
由于存储的特性,选择需要的字段可加快字段的读取、减少数据量。避免采用*读取所有字段。
本篇文章主要介绍Apache Hudi在医疗大数据中的应用,主要分为5个部分进行介绍:1. 建设背景,2. 为什么选择Hudi,3. Hudi数据同步,4. 存储类型选择及查询优化,5. 未来发展与思考。
http://prestodb-china.com/ PRESTO是什么? Presto是一个开源的分布式SQL查询引擎,适用于交互式分析查询,数据量支持GB到PB字节。 Presto的设计和编写完全是为了解决像Facebook这样规模的商业数据仓库的交互式分析和处理速度的问题。 它可以做什么? Presto支持在线数据查询,包括Hive, Cassandra, 关系数据库以及专有数据存储。 一条Presto查询可以将多个数据源的数据进行合并,可以跨越整个组织进行分析。 Presto以分析师的需求作为目标,
Presto是Facebook在2012年开发的,是专为Hadoop打造的一款数据仓库工具。在早期Facebook依赖Hive做数据分析,Hive底层依赖MapReduce,随着数据量越来越大,使用Hive进行数据分析,时间可能需要分钟级到小时级别,不能满足交互式查询的数据分析场景。2012年秋季,Facebook开发Presto,目前该项目在Facebook中运行超过30000个查询,每日处理数据PB以上。Presto的查询速度是Hive的5-10倍。
随着互联网、物联网、5G、人工智能、云计算等技术的不断发展,越来越多的数据在互联网上产生,对互联网的运营也开始进入精细化,因此大数据、数据分析、数字营销开始变成每个互联网企业的重点。在做数据分析时有OLAP、OLTP是我们必定会遇到的技术,在介绍OLAP引擎技术选型之前,我们先看看这两个技术分别是什么意思?
鼠标悬停时,数据时间一直不变更,这样鼠标移动时,就没法一眼看出正确数据。比如图中,鼠标悬停在8-29了,但是数据详情还是8-27.
DataFrame是一种不可变的分布式数据集,这种数据集被组织成指定的列,类似于关系数据库中的表。如果你了解过pandas中的DataFrame,千万不要把二者混为一谈,二者从工作方式到内存缓存都是不同的。
针对于不断新增的海量数据资源,企业需要通过及时地数据分析处理,才能从中挖掘出价值线索,反哺业务,实现数据驱动业务发展。而企业级的数据分析场景,多是采用OLAP数据分析引擎。今天的大数据开发分享,我们就主要来讲讲主流的几个OLAP开源数据分析引擎。
Hive作为SQL on Hadoop最稳定、应用最广泛的查询引擎被大家所熟知。但是由于基于MapReduce,查询执行速度太慢而逐步引入其他的近实时查询引擎如Presto等。值得关注的是Hive目前支持MapReduce、Tez和Spark三种执行引擎,同时Hive3也会支持联邦数据查询的功能。所以Hive还是有很大进步的空间的。
Presto是Facebook开源的MPP(Massive Parallel Processing)SQL引擎,其理念来源于一个叫Volcano的并行数据库,该数据库提出了一个并行执行SQL的模型,它被设计为用来专门进行高速、实时的数据分析。
但对于pulsar在我们的业务定位来说,我只是想寻找/提供一种TB级消息存储规模下定位问题/简单使用的手段,不需要像图中这样兴师动众。
Presto 作为现在在企业中流行使用的即席查询框架,已经在不同的领域得到了越来越多的应用。本期内容,我会从一个初学者的角度,带着大家从 0 到 1 学习 Presto,希望大家能够有所收获!
爱奇艺目前使用到的大数据相关技术有Druid、Impala、Kudu、Kylin、Presto、ElasticSearch等,并且随着各技术框架的版本升级而升级。比如:
在《探究Presto SQL引擎(1)-巧用Antlr》中,我们介绍了Antlr的基本用法以及如何使用Antlr4实现解析SQL查询CSV数据,更加深入理解Presto查询引擎支持的SQL语法以及实现思路。
所以说,当公司业务有跨库分析时(一般情况是,业务数据库分布在各个部门),一些数据需要配合其他部门的数据进行关联查询,这个时候可以考虑Presto。但是目前,对于MySQL统计查询在性能上有瓶颈。可考虑将数据按时间段归档到HDFS中,以提高统计效率。
在各类系统的表格类信息展示的功能中,经常会用到“翻页”这个操作,在页面上每次只展示有限的数据,需要看其他数据的时候则像翻书一样翻到后面的“页”。在 MySQL 支持的 SQL 语法中对此有特殊的支持,开发人员在实现这类功能的时候很方便:
Presto是专为大数据实时查询计算而设计开发的产品,拥有如下特点: – 多数据源:通过自定义Connector能支持Mysql,Hive,Kafka等多种数据源 – 支持SQL:完全支持ANSI SQL – 扩展性:支持自定义开发Connector和UDF – 混合计算:可以根据需要将开源于不同数据源的多个Catalog进行混合join计算 – 高性能:10倍于Hive的查询性能 – 流水线:基于Pipeline设计,在数据处理过程当中不用等到所有数据都处理完成后再查看结果
PROBLEM P5 Endpoint:10.xx.xxx.xx Metric:mysql.slave.seconds_behind_master Tags:port=3306,service=club,slave_ip=10.xx.xxx.xxx,slave_port=3306 all(#3): 184>100 Note:[[warning]因大事物或从库忙导致延时] Max:3, Current:2 Timestamp:2018-10-18 13:30:00 http://127.0.0.1:8081/portal/template/view/41
Presto 最初是由 Facebook 开发的一个分布式 SQL 执行引擎, 它被设计为用来专门进行高速、实时的数据分析,以弥补 Hive 在速度和对接多种数据源上的短板。
作者简介 张巍,携程技术中心大数据资深研发工程师。2017年加入携程,在大数据平台部门从事基础框架的研发和运维,目前主要负责 Presto,Kylin,StructedStreaming 等大数据组建的运维,优化,设计及调研工作。对资源调度,OLAP引擎,存储引擎等大数据模块有浓厚的兴趣, 对 hdfs,yarn,presto,kylin,carbondata 等大数据组建有相关优化和改造经验。 一、背景介绍 携程作为中国在线旅游的龙头,提供酒店,机票,度假等服务,这些服务的背后是基于各个部门每天对海量数
导语:SuperSQL是腾讯数据平台部自研的跨数据源、跨数据中心、跨执行引擎的统一大数据SQL分析平台/中间件,支持对接适配多类外部开源SQL执行引擎,如Spark、Hive等。 背景 SuperSQL是一款自研的跨数据源、跨数据中心、跨执行引擎的高性能大数据SQL中间件,满足对位于不同数据中心的不同类型数据源的数据联合分析/即时查询的需求。SuperSQL的目标是成为公司内部统一的SQL分析中间件,实现以下三点的价值: 解决业务数据孤岛,最大化数据的使用价值 执行引擎最优选择,提升业务使用数据效率 优化
导语:SuperSQL是腾讯数据平台部自研的跨数据源、跨数据中心、跨执行引擎的统一大数据SQL分析平台/中间件,支持对接适配多类外部开源SQL执行引擎,如Spark、Hive等。 背景 SuperSQL是一款自研的跨数据源、跨数据中心、跨执行引擎的高性能大数据SQL中间件,满足对位于不同数据中心的不同类型数据源的数据联合分析/即时查询的需求。SuperSQL的目标是成为公司内部统一的SQL分析中间件,实现以下三点的价值: 解决业务数据孤岛,最大化数据的使用价值 执行引擎最优选择,提升业务使用数据效率
☞ 03.OLAP引擎 [ Kylin Druid Presto Impala Kudu ADB ES .. ]
作者 | Uber Engineering 译者 | Sambodhi 策划 | 赵钰莹 本文最初发布于 Uber 官方博客,InfoQ 经授权翻译如下 Uber 的目的就是要让全世界变得更好,而大数据是一个非常重要的部分。Presto 和 Apache Kafka 在 Uber 的大数据栈中扮演了重要角色。Presto 是查询联盟的事实标准,它已经在交互查询、近实时数据分析以及大规模数据分析中得到应用。Kafka 是一个支持很多用例的数据流中枢,比如 pub/sub、流处理等。在这篇文章中,我们
在之前的文章学习了离线数仓的构建,但是离线数仓的最大问题即:慢,数据无法实时的通过可视化页面展示出来,通常离线数仓分析的是“T+1”的数据,针对于时效性要求比较高的场景,则无法满足需求,例如:快速实时返回“分组+聚合计算+排序聚合指标”查询需求。
数据应用,是真正体现数仓价值的部分,包括且又不局限于 数据可视化、BI、OLAP、即席查询,实时大屏,用户画像,推荐系统,数据分析,数据挖掘,人脸识别,风控反欺诈等等。
领取专属 10元无门槛券
手把手带您无忧上云