首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在Konva.js中调整和旋转具有相同锚点的线的大小

在Konva.js中,要调整和旋转具有相同锚点的线的大小,可以通过以下步骤实现:

  1. 创建Konva.Stage和Konva.Layer对象,用于容纳绘制的线条。
  2. 使用Konva.Line类创建线条对象,并设置起始点和终点的坐标。
  3. 设置线条的样式,如颜色、宽度等。
  4. 将线条对象添加到Konva.Layer中。
  5. 将Konva.Layer添加到Konva.Stage中。
  6. 调用Konva.Stage.draw()方法将线条绘制到画布上。

要调整线条的大小,可以使用Konva.Line的scaleX和scaleY属性。这两个属性可以分别控制线条在水平和垂直方向上的缩放比例。例如,将scaleX设置为2,线条的宽度将变为原来的两倍。

要旋转线条,可以使用Konva.Line的rotation属性。该属性表示线条相对于其锚点的旋转角度。通过设置rotation属性的值,可以使线条绕锚点进行旋转。

以下是一个示例代码,演示如何在Konva.js中调整和旋转具有相同锚点的线的大小:

代码语言:txt
复制
// 创建舞台和图层
var stage = new Konva.Stage({
  container: 'container',
  width: window.innerWidth,
  height: window.innerHeight
});

var layer = new Konva.Layer();
stage.add(layer);

// 创建线条对象
var line = new Konva.Line({
  points: [100, 100, 300, 100], // 起始点和终点的坐标
  stroke: 'black', // 线条颜色
  strokeWidth: 2 // 线条宽度
});

// 添加线条对象到图层
layer.add(line);

// 调整线条大小
line.scaleX(2); // 将线条宽度放大两倍

// 旋转线条
line.rotation(45); // 将线条顺时针旋转45度

// 绘制线条
stage.draw();

在这个例子中,我们创建了一个起始点为(100, 100)、终点为(300, 100)的线条对象。然后,我们将线条的宽度放大两倍,并将其顺时针旋转45度。最后,通过调用stage.draw()方法将线条绘制到舞台上。

对于Konva.js中其他相关概念、分类、优势、应用场景以及腾讯云相关产品和产品介绍链接地址,可以根据具体需求进行补充。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • ai学习记录

    界面: 多个预编辑区:制作图形,使用的图形放到工作区内,不使用在预编区。 没有Ctrl/Alt+delete的概念,没有前后景颜色。 新建:分辨率:矢量软件和分辨率无关; 新建时候不要勾选对齐到像素网格 存储:.ai:illustrator的默认格式。 .eps:支持矢量图形,ai可以打开;也可以被ps打开,打开之后图层是合并的。 PDF:可以跨平台(PC,苹果)跨软件打开。PDF输出(保存时):可以选择输出范围。PS打开PDF的注意事项:打开时选择单页,然后打开页面选项选择剪裁到媒体框。 JPG导出:文件——导出 勾选上使用画板 打开:不要用Crtl+O 打开位图;否则会变为嵌入文件; 置入:将图片拖拽到画布上松开;置入后图片上还有一个X; 置入图片之后,必须记得将AI和其他链接文件一同移动,否则链接将会丢失。 使用渐变工具:可以在填色目标上滑动改变渐变的角度和分布; 高级应用:当吸取目标为位图时:选择吸管I,按住shift键,在位图上吸取。 直接选择工具小白 A 作用:1选择移动锚点和路径 2.调节控制手柄,按住Alt键,可以控制单个手柄。 锚点的分类 A角点:有路径线,手柄为隐藏的。 B 平滑点: 有路径线,手柄在同一直线上,手柄长短可以相等或者不等,路径线为平滑弧线。 C.贝塞尔点:有路径线,手柄不再同一直线上,手柄长度可以不相等,路径线为尖角的两段弧线组成。 角点变换为平滑点(转换点工具),平滑点变贝塞尔点。(小白+Alt键) 路径描边转换为内部填充: 1.选择绘制的路径描边。 2.对象——扩展 路径查找器:Ctrl+shift+F9 1.分割: A.图形与图形:会将相交的区域独立出来;(分割后需解组) B.图形和描边:会沿描边切割图形。 2.修边 将图形重叠部分减去,形成多个独立的新图形; 3.合并 图像颜色相同合并,不同相减。 4.剪裁 (剪贴蒙版 Ctrl+7 针对矢量和位图) 下方的图形颜色显示在上方图形的范围内;只针对矢量图形; 5.轮廓 将填充的图形转换为描边图形,并且在每个交点处断开路径。 6.减去后方对象: 相减,保留上对象; Ctrl+N 新建 Ctrl+D 重复再制 Ctrl+Z 后退 D 默认描边和填充 Shift+X 调换填充和描边 Ctrl+G 编组 选中要编组的对象 Shift+ctrl+G 取消编组 Shift+ctrl+B 显示/隐藏定界框 Ctrl+X 剪切 E 自由变换 Ctrl+Shift+V 原位置粘贴 Ctrl+B 贴在后面 Ctrl+F 贴在前面 Ctrl+2 锁定选中的对象 Ctrl+F9 渐变面板 F6 颜色面板 V 选择工具 A 小白箭头 M 矩形工具 L 椭圆工具 多边形:在绘制的多边形上按Ctrl,单击“圆圈点”,拖动即可更改圆角多边形。(星形工具也可以) 光晕工具:单击拖动确定光晕大小,“上下”调整光线数量,松开鼠标,在另一位置拖动确定光晕长度及数量,“上下”更改光晕的数量,松开鼠标绘制完成。 区域文字:出现红色加号,表示文字溢出。 转曲:就是将文字转变为图形; 1.防止源文件拷贝到其他的计算机时,字体丢失。 2. 制作艺术字。 注意:转为曲线的文字不能修改字体;将发给客户的文件转曲;留给自己的不转曲。 标准:可读性,易读性 1.要选好基准字体(横竖粗细相等,不带装饰的字体) 2.创建轮廓/转曲(Ctrl+shift+O) 3.字体设计时结合文字的意思进行图形化处理; 4.能简则简,能连则连;

    02

    photoshop学习笔记

    窗口——工作区——复位基本功能:让软件界面恢复到默认的标准状态 所有的控制面板都在窗口菜单中,可以对其进行隐藏和显示 按下TAB键可以隐藏或显示工具箱,属性栏,控制面板 按下SHIFT+TAB键,可以只隐藏控制面板 新建文档: 基于互联网设计(屏幕显示):单位:像素,分辨率:72,颜色模式:RGB 基于印刷设计时:单位:毫米MM,分辨率:300,颜色模式:CMYK (一)矩形选框工具(椭圆选框)M 按SHIFT键可以强制为正方形(正圆) 按ALT键可以保持中心点不变 同时按下SHIFT+ALT键,可保持中心不变强制为正方形(正圆) (二)背景色 前景色填充:ALT+DELETE(删除) 背景色填充:CTRL+DELETE(删除) 按D键,恢复到默认的黑白色 按X键,前背景色的切换 (三)移动工具V 功能:移动对象 复制:按下ALT键用移动工具进行拖拽 (四)图层 新建图层:CTRL+ALT+SHIFT+N 图层编组:CTRL+G (五)保存和打开 保存:CTRL+S 可以把内容存储起来 另存为:CTRL+SHIFT+S,把文件重新保存一份 默认的格式:PSD(源文件格式) 打开的方式:CTRL+O 把文档拖拽至软件中也可以打开 (六):移动选取与移动内容的区别 移动选区:绘制选区后,用矩形选框工具指在选区内,会出现白色箭头,可以移动选区。(属性栏中必须选 中的新选区) 移动内容:绘制选区后,用移动工具指在选区内,会出现黑色箭头,可以移动选区内的内容。 (七)选区的修改 边界:会得到有一定宽度的环形区域,会有羽化效果 平滑:把直角选区变成圆角选区 扩展:均匀的扩大选区 收缩:均匀的缩小选区 (八)自由变换CTRL+T 按下SHIFT键,保持比例不变 按下ALT键,保持中心不变 调整四个角点可以调整整体比例,调整四个边点可以调整宽度和高度 按下SHIFT加工具本身的快捷键,可以切换选中的工具 CTRL+k:首选项 (九)羽化SHIFT+F6 羽化:让边缘变得柔和,半透明 选区的布尔运算:加选区,减选区,与选区相交 载入选区:按下CTRL键,点击图层缩略图可得到相应的选区 (十)常用快捷键 取消选区:CTRL+D 第一步撤销CTRL+Z,第二步以上的撤销CTRL+ALT+Z)默认撤销步数为20步。 放大:CTRL+”+” 缩小:CTRL+”-” 抓手工具:空格 CTRL+J:通过拷贝的图层(复制图层) 橡皮擦工具:E

    02

    Dynamic Anchor Learning for Arbitrary-Oriented Object Detection

    任意方向的目标广泛出现在自然场景、航拍照片、遥感图像等,任意方向的目标检测受到了广泛的关注。目前许多旋转检测器使用大量不同方向的锚点来实现与ground truth框的空间对齐。然后应用交叉-联合(IoU)方法对正面和负面的候选样本进行训练。但是我们观察到,选择的正锚点回归后并不能总是保证准确的检测,而一些阴性样本可以实现准确的定位。这说明通过IoU对锚的质量进行评估是不恰当的,进而导致分类置信度与定位精度不一致。本文提出了一种动态锚学习(DAL)方法,利用新定义的匹配度综合评价锚的定位潜力,进行更有效的标签分配过程。这样,检测器可以动态选择高质量的锚点,实现对目标的准确检测,缓解分类与回归的分歧。在新引入的DAL中,我们只需要少量的水平锚点就可以实现对任意方向目标的优越检测性能。在三个遥感数据集HRSC2016、DOTA、UCAS-AOD以及一个场景文本数据集ICDAR 2015上的实验结果表明,与基线模型相比,我们的方法取得了实质性的改进。此外,我们的方法对于使用水平边界盒的目标检测也是通用的。

    01

    IENet: Interacting Embranchment One Stage Anchor Free Detector

    航空图像中的目标检测是一项具有挑战性的任务,因为它缺乏可见的特征和目标的不同方向。目前,大量基于R-CNN框架的检测器在通过水平边界盒(HBB)和定向边界盒(OBB)预测目标方面取得了显著进展。然而,单级无锚解仍然存在开放空间。提出了一种基于逐像素预测检测器的航空图像定向目标单级无锚检测器。我们通过开发一个具有自我注意机制的分支交互模块来融合来自分类和框回归分支的特征,从而使它成为可能。在角度预测中采用几何变换,使预测网络更易于管理。我们还引入了一种比正多边形借条更有效的借条损耗来检测OBB。在DOTA和HRSC2016数据集上对所提出的方法进行了评估,结果表明,与最先进的检测器相比,我们所提出的IENet具有更高的OBB检测性能。

    01
    领券