首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用Keras通过Python进行卷积神经网络的手写数字识别

在第一次调用这个函数时,数据集会自动下载,并以15MB文件大小存储在〜/ .keras / datasets / mnist.pkl.gz目录中。 这对开发、测试深度学习模型非常方便。...Keras提供了很多创建卷积神经网络的方法。 在本节中,我们将为MNIST创建一个简单的CNN,演示如何使用CNN实现包括卷积图层,合并图层和压缩图层的方法。 第一步是导入所需的类和函数。...在Keras中,用于二维卷积的图层理想的输入是具有高维度的像素输入。 在RGB的情况下,红色,绿色和蓝色的像素分量将有三个,并且每个彩色图像将具有3组输入。...第一层是一个叫做Convolution2D的卷积层。该图层具有32个特征图,其大小为5×5,并具有整流器激活的功能。这是输入图层,期望具有上述结构轮廓像素丰富的图像。...架构,其中包含额外的卷积、最大池层和完全连接层。

5.9K70

Keras高级概念

几个常见的神经网络组件被实现为图形。两个值得注意的是Inception模块和残差连接。为了更好地理解function API如何用于构建图层图,看一下如何在Keras中实现它们。...更复杂的Inception模块版本也是可能的,通常涉及池化操作,不同的空间卷积大小(例如,在某些分支上为5×5而不是3×3),以及没有空间卷积的分支(仅1×1)卷积)。 ?...残差连接包括使较早层的输出可用作后续层的输入,从而有效地在顺序网络中创建快捷方式。不是将其连接到后来的激活值上,而是将较早的输出与后面的激活值相加,后者假定两个激活值的大小形状相同。...如果它们的大小不同,则可以使用线性变换将较早的激活值重新整形为目标形状(例如,没有激活函数的全连接层,或者对于卷积特征映射,没有激活函数的1×1卷积)。...这正是深度可分离卷积层的作用(SeparableConv2D)。在通过逐点卷积(1×1卷积)混合输出通道之前,该层独立地在其输入的每个通道上执行空间卷积。

1.7K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Colab 超火的 KerasTPU 深度学习免费实战,有点 Python 基础就能看懂的快速课程

    keras 中调用 keras_to_tpu_model,部署额外的硬件可以通过增加训练批次的大小增加训练过程。...通过加载图像文件的代码将它们调整为通用大小,然后将它们存储在 16 个 TFRecord 文件中,代码链接如下: https://colab.research.google.com/github/GoogleCloudPlatform...在我们的案例中,我们将从 ImageNet 训练的网络迁移学习。 在 Keras 中,可以从 tf.keras.applications.* 集合中实例化预先训练的模型。...Dense 层是全连接的神经网络,在 Dense 层中,图层中的每个节点都连接到前一图层中的每个节点。 用最大池化做卷积的动画示例如下☟ ?...在 Keras 中利用 TPU 组建现代卷积网络和实现分类 之前三个实验已经分别介绍了 TPU、迁移学习和卷积网络,是不是已经觉得很厉害了?

    1K20

    Colab超火的KerasTPU深度学习免费实战,有点Python基础就能看懂的快速课程

    中调用keras_to_tpu_model,部署额外的硬件可以通过增加训练批次的大小增加训练过程。...通过加载图像文件的代码将它们调整为通用大小,然后将它们存储在16个TFRecord文件中,代码链接如下: https://colab.research.google.com/github/GoogleCloudPlatform...在Keras中利用TPU组建卷积神经网络 本次实验,完成三个目标: 使用Keras Sequential模型构建卷积图像分类器。 在TPU上训练Keras模型 使用良好的卷积层选择来微调模型。...Dense层是全连接的神经网络,在Dense层中,图层中的每个节点都连接到前一图层中的每个节点。 用最大池化做卷积的动画示例如下☟ ? 用Softmax激活函数连接分类器,典型的卷积分类器如下☟ ?...在Keras中利用TPU组建现代卷积网络和实现分类 之前三个实验已经分别介绍了TPU、迁移学习和卷积网络,是不是已经觉得很厉害了?

    1.1K20

    Colab超火的KerasTPU深度学习免费实战,有点Python基础就能看懂的快速课程

    中调用keras_to_tpu_model,部署额外的硬件可以通过增加训练批次的大小增加训练过程。...通过加载图像文件的代码将它们调整为通用大小,然后将它们存储在16个TFRecord文件中,代码链接如下: https://colab.research.google.com/github/GoogleCloudPlatform...在Keras中利用TPU组建卷积神经网络 本次实验,完成三个目标: 使用Keras Sequential模型构建卷积图像分类器。 在TPU上训练Keras模型 使用良好的卷积层选择来微调模型。...Dense层是全连接的神经网络,在Dense层中,图层中的每个节点都连接到前一图层中的每个节点。 用最大池化做卷积的动画示例如下☟ ? 用Softmax激活函数连接分类器,典型的卷积分类器如下☟ ?...在Keras中利用TPU组建现代卷积网络和实现分类 之前三个实验已经分别介绍了TPU、迁移学习和卷积网络,是不是已经觉得很厉害了?

    1K30

    Keras 初学者教程:使用python了解深度学习

    ---- 在这个循序渐进的Keras教程中,您将学习如何使用Python构建卷积神经网络。 我们将训练一个手写数字识别分类器,其在著名的MNIST数据集上将具有超过99%的准确率。...通常,使用计算机视觉时,在进行任何算法工作之前,以可视方式绘制数据是非常有帮助。这是个快速的健全性检查,可以防止容易避免的错误(例如误解数据维度)。...在这种情况下,它与每个数字图像的(深度,宽度,高度)相对应(1,28,28)。 但前3个参数代表什么? 它们分别对应于要使用的卷积滤波器的数量,每个卷积内核中的行数以及每个卷积内核中的列数。...,第一个参数是图层的输出大小。...Keras自动处理层之间的连接。 请注意,最后一层的输出大小为10,对应于10个数字类。 另请注意,卷积层的权重必须在将它们传递到完全连接的Dense层之前展平(制作为1维)。

    82850

    理解keras中的sequential模型

    keras中的主要数据结构是model(模型),它提供定义完整计算图的方法。通过将图层添加到现有模型/计算图,我们可以构建出复杂的神经网络。...理解Sequential模型 Sequential模型字面上的翻译是顺序模型,给人的第一感觉是那种简单的线性模型,但实际上Sequential模型可以构建非常复杂的神经网络,包括全连接神经网络、卷积神经网络...如下代码向模型添加一个带有64个大小为3 * 3的过滤器的卷积层: from keras.models import Sequential from keras.layers import Dense,...layers(图层),以下展示如何将一些最流行的图层添加到模型中: 卷积层 model.add(Conv2D(64, (3, 3), activation='relu')) 最大池化层 model.add...在keras中,Sequential模型的compile方法用来完成这一操作。例如,在下面的这一行代码中,我们使用’rmsprop’优化器,损失函数为’binary_crossentropy’。

    3.6K50

    使用计算机视觉算法检测钢板中的焊接缺陷

    先决条件 对机器学习的基本理解 卷积神经网络的基本思想 了解卷积、最大池化和上采样操作 U-Net架构思路 对残差块中的跳过连接的基本理解(可选) 使用 Python、TensorFlow 和 Keras...(x,y) 尺寸位于框的左下边缘。 箭头表示不同的操作。 图层的名称在图层下方提供。...左侧是收缩路径,其中应用了常规卷积和最大池化操作 图像的大小逐渐减小,而深度逐渐增加。...右侧是扩展路径,其中应用了 (上采样) 转置卷积和常规卷积操作 在扩展路径中,图像尺寸逐渐增大,深度逐渐减小 为了获得更精确的位置,在扩展的每个步骤中,我们通过将转置卷积层的输出与来自编码器的特征图在同一级别连接来使用跳过连接...我们使用批量处理大小为 10 的 100 个 epoch(模型在所有输入上运行的次数)。 测试模型 由于模型的输入尺寸为 512x512x3 ,因此我们已将输入大小调整为该尺寸。

    60810

    在TensorFlow 2中实现完全卷积网络(FCN)

    如果它们不相等,则将图像调整为相等的高度和宽度。 较新的体系结构确实能够处理可变的输入图像大小,但是与图像分类任务相比,它在对象检测和分割任务中更为常见。...在本教程中,将执行以下步骤: 使用Keras在TensorFlow中构建完全卷积网络(FCN) 下载并拆分样本数据集 在Keras中创建生成器以加载和处理内存中的一批数据 训练具有可变批次尺寸的网络 使用...确保(1, 1, num_of_filters)从最后一个卷积块获得输出尺寸(这将被输入到完全连接的层)。 尝试减小/增大输入形状,内核大小或步幅,以满足步骤4中的条件。...测试FCN模型的一些有趣的数据集可能来自医学成像领域,其中包含对图像分类至关重要的微观特征,而其他数据集包含的几何图案/形状在调整图像大小后可能会失真。...无法调整图像大小(因为我们将失去微观特征)。现在由于无法调整图像的大小,因此无法将其转换为成批的numpy数组。

    5.2K31

    从卷积神经网络的角度看世界

    原因是添加完全连接的层迫使您为模型使用固定的输入大小(224x224,原始ImageNet格式)。通过只保留卷积模块,我们的模型可以适应任意的输入大小。...该模型加载一组在ImageNet上预先训练的权重。 现在让我们定义一个损失函数,它将试图最大化在一个特定图层(layer_name)中对特定过滤器(filter_index)的激活。...我们通过Keras中的backend函数来实现这个功能,它可以使我们的代码在TensorFlow和Theano之上运行。...现在开始介绍比较有趣的部分。我们可以使用相同的代码来系统地显示哪种输入(它们不是唯一的)可以使每个图层中的每个过滤器达到最大化,从而为我们提供了对卷积网络视觉空间的模块化分层分解的整洁可视化。...视觉皮层开始并不是卷积,虽然它是分层结构,这些图层本身被组织成皮质柱,其确切目的仍然不能被很好理解 - 这是我们的人工网络中没有发现的一个特征(虽然Geoff Hinton正在研究它)。

    88660

    大小仅17KB!小型风格迁移网络包含11686个训练权重

    修剪策略 卷积神经网络通常包含在训练期间调整的数百万甚至数亿个权重。作为一般的经验法则,更多的权重意味着更高的准确性。但是交换效率非常低。...权重级别:正如我们所见,在某些神经网络中绝大多数(> 95%)训练过的权重都没有帮助。如果我们能够确定哪些权重实际上有助于网络准确性,我们可以保留这些权重并删除其余权重。 层级别:权重打包在单个层中。...例如,2D卷积层具有称为内核的权重张量,具有用户定义的宽度,高度和深度。使内核更小会缩小整个网络的大小。 块级别:层通常组合成块,即可重复利用的子图。...在实践中修剪 研究者的图层修剪技术是引入宽度乘数作为超参数。谷歌首次在其着名的MobileNet论文中介绍,它既简单又有效。 宽度乘数通过恒定分数调整每个卷积层中的滤波器数量。...即使在保持参数数量固定的情况下,更深的网络也能产生更好的结果。最终删除了五个剩余块中的两个,并将每个层的默认过滤器数量减少到32。

    60120

    深度学习基础之Dropout

    在训练过程中,一些层的输出被随机忽略或“丢弃”,这种效果使原本的图层看起来像具有不同节点数,并且与前一个图层的连接关系也发生了变化。...实际上,在训练期间对图层的每次更新都会对设置图层的不同“视图”执行。 ? 通过丢弃一个单元,意味着暂时将其从网络中删除,以及其所有传入和传出连接。...随机失活是在神经网络中每层中实现。 它可以与大多数类型的层一起使用,例如密集完连接层、卷积层和循环层(如长短期内存网络层)。...Alex Krizhevsky等人在其著名的2012年论文《图像分类与深层卷积神经网络》中,利用卷积神经网络和随机失活取得了(当时)在ImageNet数据集上使用深度卷积神经的图片分类的最先进的结果。...较大的权重大小可能表示网络不稳定。 为了抵消这种影响,可以施加权重约束,以强制层中所有权重的范数(大小)低于指定值。例如,建议最大范数约束值在3到4之间。 ? […]我们可以使用最大范数正则化。

    74910

    在VMware虚拟机软件中安装的Ubuntu虚拟机的窗口不能自动调整大小的解决办法

    在 VMware虚拟机软件 中安装的 Ubuntu虚拟机 的窗口不能自动调整大小的解决办法:   配置虚拟机时,发现屏幕大小太小,一般解决思路是:需要安装vmware tools ,屏幕就会自适应 。...1)首先是打开虚拟机,在菜单栏找到“VM”选项,并在其子菜单中选择 “Guest” --> "Install/Upgrade VMware Tools" (注意:是要在虚拟机启动的状态下进行操作)。     ...8)重启之后在VMware界面的菜单栏找到 “View” --> “Autosize” --> “Autofit Window” 选定它。         ...(中文版是:查看 --> 自动调整大小 --> 自动适应客户机大小 )   9)Ubuntu分辨率调整,进入“系统设置”,找到 “显示” 点击进入调整你需要的分辨率,通常数值越大,界面就越大,能显示的内容就越多...至此配置成功,虚拟机可随VMware窗口大小自动调整。 问题解决之后的界面: ?

    14K30

    Python人工智能 | 十八.Keras搭建卷积神经网络及CNN原理详解

    它与之前的宽度和高度不同,更重要的是它跟之前的深度不同,而不是仅仅只有红绿蓝,现在你得到了K个颜色通道,这种操作称为——卷积。...如果你的块大小是整张图片,那它跟普通的神经网络层没有任何区别,正是由于我们使用了小块,我们有很多小块在空间中共享较少的权重。...总结:整个CNN从下往上依次经历“图片->卷积->持化->卷积->持化->结果传入两层全连接神经层->分类器”的过程,最终实现一个CNN的分类处理。...IMAGE 图片 CONVOLUTION 图层 MAX POOLING 更好地保存原图片的信息 CONVOLUTION 图层 MAX POOLING 更好地保存原图片的信息 FULLY CONNECTED...同时建议大家处理神经网络时,先用一般的神经网络去训练它,如果得到的结果非常好,就没必要去使用CNN,因为CNN结构比较复杂。 二.Keras实现CNN 接着我们讲解如何在Keras代码中编写CNN。

    1.5K60

    TensorFlow 2.0入门

    高级API构建和训练图像分类器模型 下载和微调InceptionV3卷积神经网络 使用TensorFlow服务为受过训练的模型提供服务 本教程中的所有代码都可以在Jupyter笔记本中的GitHub存储库中找到...需要将所有图像的大小调整为给定的高度和宽度,并将像素值标准化为0到1之间的范围。这样做是因为为了训练卷积神经网络,必须指定输入维度。最终致密层的形状取决于CNN的输入尺寸。...首先将3D输出展平(或展开)为1D,然后在顶部添加一个或多个Dense图层。数据集有5个类,从下载的数据集的元数据中获取该值。因此添加了一个带有5个输出和softmax激活的最终Dense层。...在编译和训练模型之前冻结卷积基是很重要的,通过设置来实现base_model.trainable = False。通过冻结可以防止在训练期间更新基础模型中的权重。...TensorFlow服务服务器期望输入图像尺寸为(1,128,128,3),其中“1”是批量大小。使用Keras库中的图像预处理工具将输入图像加载并转换为所需的尺寸。

    1.8K30

    具有TensorFlow,Keras和OpenCV的实时口罩检测器

    其次,将关注区域的大小调整为a 100x100并将其传递给预先训练的CNN,它将提供作为输出的概率。 步骤1:资料预处理 使用的数据集由颜色,大小和方向不同的图像组成。...因此,需要将所有图像转换为灰度,因为需要确保颜色不应成为检测遮罩的关键点。之后,100x100在将其应用于神经网络之前,需要使所有图像具有相同的大小。...可以绘制图形以做出更好的验证决策。已将其包含在我的存储库中。请参考。 步骤3:侦测有无面具的人脸 首先,必须加载创建的模型。然后,将想要的相机设置为默认相机。...可选-您可以将移动摄像头(Android / IOS)连接到OpenCV。下载适用于您的手机和PC的DroidCam应用程序。...for由于训练网络需要4D输入,因此它将循环运行以针对每个脸部并检测感兴趣的区域,将其调整大小并重塑为4D。对于模型,将使用最佳模型来获得结果。

    1.2K21

    在Keras和Tensorflow中使用深度卷积网络生成Meme(表情包)文本

    在训练之前,数据使用了几种清洗技术: 调整前导和尾随空格,并用\s+单个空格字符替换重复的空格()。 应用最少10个字符的字符串长度,这样就不会生成无聊的单字或单字母Memes(表情包文本)。...在测试尺寸为2,3,5和7之后选择大小为5的卷积核。其中2和3的卷积确实更差, 7需要更多的参数,这会使训练变慢。...在研究中,其他人已经成功地使用了3到7种不同组合的卷积大小,大小为5的卷积核通常在文本数据上表现得相当不错。 选择ReLU激活是因为它快速,简单,并且非常适用于各种各样的用例。...从概念上讲,这允许卷积滤波器从更深层中的文本中学习更多抽象模式,因为在每个最大池操作将维度减少2倍之后,宽度5内核将跨越两倍的字符。...在所有转换图层之后,使用全局最大合并图层,它与普通的最大合并图层相同,只是它会自动选择缩小输入尺寸以匹配下一图层的大小。

    1K40

    使用 Python 实现的卷积神经网络初学者指南

    ---- 磐创AI分享 来源 | geekwire 编辑 | 白峰 目录 卷积神经网络简介 其组成部分 输入层 卷积层 池化层 全连接层 CNN 在数据集上的实际实现 CNN简介 卷积神经网络是一种专为处理图像和视频而设计的深度学习算法...典型的 CNN 模型如下所示: 输入层 卷积层+激活函数 池化层 全连接层 来源:https://learnopencv.com/image-classification-using-convolutional-neural-networks-in-keras...使用我们从上面的例子中得到的特征图来应用池化。这里我们使用了一个大小为 2*2的池化层,步长为 2。...取每个突出显示区域的最大值,并获得大小为 2*2的新版本输入图像,因此在应用池化后,特征图的维数减少了。 全连接层 到目前为止,我们已经执行了特征提取步骤,现在是分类部分。...全连接层(如我们在 ANN 中所使用的)用于将输入图像分类为标签。该层将从前面的步骤(即卷积层和池化层)中提取的信息连接到输出层,并最终将输入分类为所需的标签。

    1.5K20

    计算机视觉中的深度学习

    卷积网络介绍 在介绍卷积神经网络理论以及神经网络在计算机视觉方面应用广泛的原因之前,先介绍一个卷积网络的实例,整体了解卷积网络模型。用卷积网络识别MNIST数据集。...回答之前,先了解Conv2D和MaxPooling2D层。 卷积操作 全连接网络和卷积网络的区别在于Dense全连接层学习输入特征空间的全局模式特征,而卷积神经网络学习输入特征空间的局部模式特征。...为了进一步减缓过拟合,需要增加Dropout层,在全连接层之前。...在卷积网络中,特征提取包括获取先前训练的网络的卷积基础,通过它运行新数据,以及在输出之上训练新的分类器。 ? 为什么只重用卷积网络?是否可以重复使用全连接分类器?一般来说,应该避免这样做。...此外,在全连接网络层的输出表示不再包含有关对象在输入图像中的位置信息:这些表示消除了空间的概念,而卷积特征图还可以描述对象的位置信息。对于对象位置很重要的问题,全连接的特征表示在很大程度上是无用的。

    2.1K31

    教程 | 百行代码构建神经网络黑白图片自动上色系统

    对于画师来说,这还意味着很多研究工作,一张人脸可能需要 20 张粉色、绿色和蓝色图层,经过不断调整最终才能获得正确的效果。...将这个思路归纳到我们的着色任务中——神经网络需要找到灰度图像和彩色图像之间的联系。 再准确一点,我们在寻找的是将灰度值链接到三色图层数值的方法。 ?...神经网络也可以从一个/多个过滤器组合之上创造新的图像。 对于卷积神经网络而言,每一个滤波器都会自动调整以帮助达到预期的结果。我们先要从堆叠数百个滤波器,并将它们塞进两个颜色图层 a、b 中做起。...在输入和输出之间用滤波器将它们连接起来。这是一个卷积神经网络。 ? 从左侧开始,分别是 B&W 输入、滤波器和神经网络的预测。 我们需要在相同的区间将预测值和真实值建立映射,从而将值进行比较。...然后把它们和编码器模型的输出连接起来。我们使用 256 个 1X1 卷积核的卷积网络,馈送到 ReLU 激活函数后作为融合层的最终输出。 下一步 为图像上色是一个非常有趣迷人的问题。

    1.7K60
    领券