首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在HiveMetaStoreClient中有没有一个函数可以给我一个hive-table的所有分区?

在HiveMetaStoreClient中,可以使用get_partitions函数来获取一个hive-table的所有分区。

get_partitions函数的作用是返回给定表名的所有分区信息。它接受的参数包括数据库名、表名以及可选的分区过滤器。分区过滤器可以帮助我们筛选出符合条件的分区信息。

示例代码如下:

代码语言:txt
复制
from hive_metastore import ThriftHiveMetastore
from thrift.transport import TSocket
from thrift.transport import TTransport
from thrift.protocol import TBinaryProtocol

# 连接HiveMetaStore服务
transport = TSocket.TSocket('localhost', 9083)
transport = TTransport.TBufferedTransport(transport)
protocol = TBinaryProtocol.TBinaryProtocol(transport)

client = ThriftHiveMetastore.Client(protocol)
transport.open()

# 获取指定表的所有分区
database = 'my_database'
table = 'my_table'
partitions = client.get_partitions(database, table, None)

# 输出分区信息
for partition in partitions:
    print(partition)

该函数的返回值是一个列表,列表中的每个元素都是一个分区对象,包含了分区的详细信息,如分区的键值、位置、创建时间等。

使用这个函数可以很方便地获取到一个hive-table的所有分区信息,方便后续的分区处理和分析。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 大数据技术之_12_Sqoop学习_Sqoop 简介+Sqoop 原理+Sqoop 安装+Sqoop 的简单使用案例+Sqoop 一些常用命令及参数

    Sqoop 是一款开源的工具,主要用于在 Hadoop(Hive) 与传统的数据库 (mysql,postgresql,...) 间进行数据的高校传递,可以将一个关系型数据库(例如:MySQL,Oracle,Postgres等)中的数据导入到 Hadoop 的 HDFS 中,也可以将 HDFS 的数据导进到关系型数据库中。   Sqoop 项目开始于 2009 年,最早是作为 Hadoop 的一个第三方模块存在,后来为了让使用者能够快速部署,也为了让开发人员能够更快速的迭代开发,Sqoop 独立成为一个 Apache 顶级项目。   Sqoop2 的最新版本是 1.99.7。请注意,2 与 1 不兼容,且特征不完整,它并不打算用于生产部署。

    03

    基于Hadoop生态圈的数据仓库实践 —— ETL(三)

    三、使用Oozie定期自动执行ETL 1. Oozie简介 (1)Oozie是什么 Oozie是一个管理Hadoop作业、可伸缩、可扩展、可靠的工作流调度系统,其工作流作业是由一系列动作构成的有向无环图(DAGs),协调器作业是按时间频率周期性触发的Oozie工作流作业。Oozie支持的作业类型有Java map-reduce、Streaming map-reduce、Pig、 Hive、Sqoop和Distcp,及其Java程序和shell脚本等特定的系统作业。 第一版Oozie是一个基于工作流引擎的服务器,通过执行Hadoop Map/Reduce和Pig作业的动作运行工作流作业。第二版Oozie是一个基于协调器引擎的服务器,按时间和数据触发工作流执行。它可以基于时间(如每小时执行一次)或数据可用性(如等待输入数据完成后再执行)连续运行工作流。第三版Oozie是一个基于Bundle引擎的服务器。它提供更高级别的抽象,批量处理一系列协调器应用。用户可以在bundle级别启动、停止、挂起、继续、重做协调器作业,这样可以更好地简化操作控制。 (2)为什么需要Oozie

    02

    hive模糊搜索表

    1.hive模糊搜索表 show tables like '*name*'; 2.查看表结构信息 desc formatted table_name; desc table_name; 3.查看分区信息 show partitions table_name; 4.根据分区查询数据 select table_coulm from table_name where partition_name = '2014-02-25'; 5.查看hdfs文件信息 dfs -ls /user/hive/warehouse/table02; 6.从文件加载数据进表(OVERWRITE覆盖,追加不需要OVERWRITE关键字) LOAD DATA LOCAL INPATH 'dim_csl_rule_config.txt' OVERWRITE into table dim.dim_csl_rule_config; --从查询语句给table插入数据 INSERT OVERWRITE TABLE test_h02_click_log PARTITION(dt) select * from stage.s_h02_click_log where dt='2014-01-22' limit 100; 7.导出数据到文件 insert overwrite directory '/tmp/csl_rule_cfg' select a.* from dim.dim_csl_rule_config a; hive -e "select day_id,pv,uv,ip_count,click_next_count,second_bounce_rate,return_visit,pg_type from tmp.tmp_h02_click_log_baitiao_ag_sum where day_id in ('2014-03-06','2014-03-07','2014-03-08','2014-03-09','2014-03-10');"> /home/jrjt/testan/baitiao.dat; 8.自定义udf函数 1.继承UDF类 2.重写evaluate方法 3.把项目打成jar包 4.hive中执行命令add jar /home/jrjt/dwetl/PUB/UDF/udf/GetProperty.jar; 5.创建函数create temporary function get_pro as 'jd.Get_Property'//jd.jd.Get_Property为类路径; 9.查询显示列名 及 行转列显示 set hive.cli.print.header=true; // 打印列名 set hive.cli.print.row.to.vertical=true; // 开启行转列功能, 前提必须开启打印列名功能 set hive.cli.print.row.to.vertical.num=1; // 设置每行显示的列数 10.查看表文件大小,下载文件到某个目录,显示多少行到某个文件 dfs -du hdfs://BJYZH3-HD-JRJT-4137.jd.com:54310/user/jrjt/warehouse/stage.db/s_h02_click_log; dfs -get /user/jrjt/warehouse/ods.db/o_h02_click_log_i_new/dt=2014-01-21/000212_0 /home/jrjt/testan/; head -n 1000 文件名 > 文件名 11.杀死某个任务 不在hive shell中执行 hadoop job -kill job_201403041453_58315 12.hive-wui路径 http://172.17.41.38/jobtracker.jsp 13.删除分区 alter table tmp_h02_click_log_baitiao drop partition(dt='2014-03-01'); alter table d_h02_click_log_basic_d_fact drop partition(dt='2014-01-17'); 14.hive命令行操作 执行一个查询,在终端上显示mapreduce的进度,执行完毕后,最后把查询结果输出到终端上,接着hive进程退出,不会进入交互模式。 hive -e 'select table_cloum from table' -S,终端上的输出不会有mapreduce的进度,执行完毕,只会把查询结果输出到终端上。这个静音模式很实用,,通过第三方程序调用,第三方程序通过hive的标准输出获取结果集。 hive -S -e 'select table_cloum

    02

    hive基本操作整理

    show tables like '*name*'; 2.查看表结构信息 desc formatted table_name; desc table_name; 3.查看分区信息 show partitions table_name; 4.根据分区查询数据 select table_coulm from table_name where partition_name = '2014-02-25'; 5.查看hdfs文件信息 dfs -ls /user/hive/warehouse/table02; 6.从文件加载数据进表(OVERWRITE覆盖,追加不需要OVERWRITE关键字) LOAD DATA LOCAL INPATH 'dim_csl_rule_config.txt' OVERWRITE into table dim.dim_csl_rule_config; --从查询语句给table插入数据 INSERT OVERWRITE TABLE test_h02_click_log PARTITION(dt) select * from stage.s_h02_click_log where dt='2014-01-22' limit 100; 7.导出数据到文件 insert overwrite directory '/tmp/csl_rule_cfg' select a.* from dim.dim_csl_rule_config a; hive -e "select day_id,pv,uv,ip_count,click_next_count,second_bounce_rate,return_visit,pg_type from tmp.tmp_h02_click_log_baitiao_ag_sum where day_id in ('2014-03-06','2014-03-07','2014-03-08','2014-03-09','2014-03-10');"> /home/jrjt/testan/baitiao.dat; 8.自定义udf函数 1.继承UDF类 2.重写evaluate方法 3.把项目打成jar包 4.hive中执行命令add jar /home/jrjt/dwetl/PUB/UDF/udf/GetProperty.jar; 5.创建函数create temporary function get_pro as 'jd.Get_Property'//jd.jd.Get_Property为类路径; 9.查询显示列名 及 行转列显示 set hive.cli.print.header=true; // 打印列名 set hive.cli.print.row.to.vertical=true; // 开启行转列功能, 前提必须开启打印列名功能 set hive.cli.print.row.to.vertical.num=1; // 设置每行显示的列数 10.查看表文件大小,下载文件到某个目录,显示多少行到某个文件 dfs -du hdfs://BJYZH3-HD-JRJT-4137.jd.com:54310/user/jrjt/warehouse/stage.db/s_h02_click_log; dfs -get /user/jrjt/warehouse/ods.db/o_h02_click_log_i_new/dt=2014-01-21/000212_0 /home/jrjt/testan/; head -n 1000 文件名 > 文件名 11.杀死某个任务 不在hive shell中执行 Hadoop job -kill job_201403041453_58315 12.hive-wui路径 http://172.17.41.38/jobtracker.jsp 13.删除分区 alter table tmp_h02_click_log_baitiao drop partition(dt='2014-03-01'); alter table d_h02_click_log_basic_d_fact drop partition(dt='2014-01-17'); 14.hive命令行操作 执行一个查询,在终端上显示mapreduce的进度,执行完毕后,最后把查询结果输出到终端上,接着hive进程退出,不会进入交互模式。 hive -e 'select table_cloum from table' -S,终端上的输出不会有mapreduce的进度,执行完毕,只会把查询结果输出到终端上。这个静音模式很实用,,通过第三方程序调用,第三方程序通过hive的标准输出获取结果集。 hive -S -e 'select table_cloum from table'

    04
    领券