首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

模型保存,加载和使用

[阿里DIN] 模型保存,加载和使用 0x00 摘要 Deep Interest Network(DIN)是阿里妈妈精准定向检索及基础算法团队在2017年6月提出的。...本系列文章会解读论文以及源码,顺便梳理一些深度学习相关概念和TensorFlow的实现。 本文是系列第 12 篇 :介绍DIN模型的保存,加载和使用。...因为TensorFlow会将计算图的结构和图上参数取值分开保存,所以保存后在相关文件夹中会出现3个文件。 下面就是DIN,DIEN相关生成的文件,可以通过名称来判别。...1.2 freeze_graph 正如前文所述,tensorflow在训练过程中,通常不会将权重数据保存的格式文件里,反而是分开保存在一个叫checkpoint的检查点文件里,当初始化时,再通过模型文件里的变量...我们在train函数中,存储模型之后,进行调用。

1.4K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Tensorflow加载预训练模型和保存模型

    1.2 ckpt文件 ckpt文件是二进制文件,保存了所有的weights、biases、gradients等变量。在tensorflow 0.11之前,保存在**.ckpt**文件中。...中,变量是存在于Session环境中,也就是说,只有在Session环境下才会存有变量值,因此,保存模型时需要传入session: saver = tf.train.Saver() saver.save...-of-00001 MyModel-1000.index MyModel-1000.meta 在实际训练中,我们可能会在每1000次迭代中保存一次模型数据,但是由于图是不变的,没必要每次都去保存,可以通过如下方式指定不保存图.../checkpoint_dir/MyModel',global_step=1000) 3 导入训练好的模型 在第1小节中我们介绍过,tensorflow将图和变量数据分开保存为不同的文件。...因此,在导入模型时,也要分为2步:构造网络图和加载参数 3.1 构造网络图 一个比较笨的方法是,手敲代码,实现跟模型一模一样的图结构。其实,我们既然已经保存了图,那就没必要在去手写一次图结构代码。

    1.5K30

    Tensorflow加载预训练模型和保存模型

    1.2 ckpt文件 ckpt文件是二进制文件,保存了所有的weights、biases、gradients等变量。在tensorflow 0.11之前,保存在.ckpt文件中。...中,变量是存在于Session环境中,也就是说,只有在Session环境下才会存有变量值,因此,保存模型时需要传入session: saver = tf.train.Saver() saver.save...-of-00001 MyModel-1000.index MyModel-1000.meta 在实际训练中,我们可能会在每1000次迭代中保存一次模型数据,但是由于图是不变的,没必要每次都去保存,可以通过如下方式指定不保存图.../checkpoint_dir/MyModel',global_step=1000) 3 导入训练好的模型 在第1小节中我们介绍过,tensorflow将图和变量数据分开保存为不同的文件。...因此,在导入模型时,也要分为2步:构造网络图和加载参数 3.1 构造网络图 一个比较笨的方法是,手敲代码,实现跟模型一模一样的图结构。其实,我们既然已经保存了图,那就没必要在去手写一次图结构代码。

    3K30

    Tensorflow笔记:模型保存、加载和Fine-tune

    其中.meta文件(其实就是pb格式文件)用来保存模型结构,.data和.index文件用来保存模型中的各种变量,而checkpoint文件里面记录了最新的checkpoint文件以及其它checkpoint...其中inputs和outputs分别用来获取输入输出向量的信息,在部署服务后来的数据会喂到inputs中,服务吐的结果会以outputs的形式返回;而method_name如果用来部署模型的话需要设置为...此时的“beta:0”和"bias:0"已经不再是variable,而是constant。这带来一个好处:读取模型中的tensor可以在Session外进行。...2.3 saved_model模式加载 前两种加载方法想要获取tensor,要么需要手动搭建网络,要么需要知道tensor的name,如果用模型和训模型的不是同一个人,那在没有源码的情况下,就不方便获取每个...其他补充 在2.2中,加载pb模型的时候,并不需要把所有的tensor都获取到,只要“一头一尾”即可。

    1.9K41

    在线三维CAD中加载和保存STEP模型

    Mx3dDbDocument 文档对象;视图文档对象中包含一个此类型的文档对象,文档对象可以在内部创建标签对象用于保存模型的形状以及颜色材质贴图等信息。...编写导入和保存STEP模型文件的代码在index.html中插入两个按钮"打开STEP模型","保存为STEP文件" ;index.html的完整代码如下所示:         在src/index.ts中编写两个函数loadSTEP(),saveSTEP()分别用于打开STEP模型、保存为...boxShapeLabel标签,用于保存boxShape形状和对应的颜色等信息     const sphereShapeLabel = doc.addShapeLabel(); // 文档中增加一个sphereShapeLabel...测试保存为STEP文件点击“保存为STEP文件”按钮后,首先移除了原来导入的模型,然后创建了一个立方体和球体并显示,最后点击对话框的保存按钮,模型就成功保存为了STEP模型文件,保存成功后可再次通过“打开

    11510

    【Ruby on Rails】Model中关于保存之前的原值和修改状态

    今天在Rails的Model中遇到了一个问题—— 当我从Model类中获取了一个ActiveRecord对象,对其进行了一系列修改(尚未保存),我该如何确定究竟哪些修改了呢?...(设Model为Option,相关的的参数为correct) 我本来采取的方法是——在数据表中新增一个ori_correct参数,每次对象保存之前都和correct做到同步,这样一来,是不是correct...# => true/false 也就是在相应字段后面添加_changed?,这样一来问题直接解决,亲测有效。 然而很快另外一个问题又来了,既然知道了是否被改变,那该如何知道原来的值是什么呢?...同样的,我在StackOverFlow上找到了解决办法 Appending _was to your attribute will give you the previous value....(关于更多的关于ActiveModel::Dirty所支持的各种神奇功能,请在http://api.rubyonrails.org/中输入ActiveModel::Dirty)

    1.7K90

    在 Google Colab 中使用 JuiceFS

    如下图,使用时在界面左侧的文件管理中点击按钮即可将 Google Drive 挂载到运行时,把需要长期保留或重复使用的数据保存在里面,再次使用可以从 Google Drive 中加载,这就避免了运行被释放时丢失数据...除了 Google Drive 以外,你还可以使用 JuiceFS 作为 Colab 笔记本的持久化存储,从而更为灵活地保存和共享更大规模的数据。...比如使用开源的 Chroma 向量数据库,因为它默认将数据保存在本地磁盘,在 Colab 中需要注意数据库的保存位置,以防运行时收回造成数据丢失。...总结 本文介绍了如何在 Google Colab 中使用 JuiceFS 来持久化保存数据,通过实例介绍了如何为 JuiceFS 准备元数据引擎和对象存储来尽量发挥它的性能,以及在 Colab 中的安装和挂载方法...最后通过 Fooocus 和 Chroma 两个例子,演示了在实际应用中如何利用 JuiceFS 来更好地保存并重复利用数据。

    24110

    在Nebula3中加载自定义模型的思路

    嗯, 虽说地形也是一种特殊的模型, 但它的管理方式相对来说太过于特殊了, 不知道还能不能跟模型走一条管线. 先看看植被是怎么组织的: ?...下面主要看看这个graphicsEntity是怎么生出来的: InternalModelEntity是场景管理中的基本图形对象(同级的还有摄像机和灯光), 这里面包含了一个ManagedModel....资源的管理/加载都是在这一模块中进行的 Model就代表实际的模型了, 它由一系列层次结构的ModelNode组成. 在这里只有ShapeNode, 即静态图形....创建ShapeNode, 利用MemoryMeshLoader加载1中的数据到实例中, 同时设置shader和相应参数(纹理也是shader 参数的一种, 渲染状态是包含在fx中的, 所以也属于shader...然后把2中的ShapeNode Attach到Model, 并利用一个EmptyResourceLoader来完成资源状态的切换(因为数据已经有了, 需要把资源状态切换到”加载完成”才能使用) 4.

    1.3K40

    用谷歌Colab免费批量将本地电脑上的Mp3语音文件转文字

    接下来使用Openai的whisper模型:https://github.com/openai/whisper 在ChatGPT中输入提示词: 你是一个编程高手,写一个谷歌colab的ipynb脚本,实现任务如下...: 从huggingface下载Whisper large-v3-turbo语音转录模型文件,然后保存到谷歌Drive中的myaudio文件夹中; 读取谷歌Drive中的myaudio文件目录中所有子文件夹中的音频文件...; 从谷歌Drive中调用Whisper large-v3-turbo模型将所有音频文件转录成文字,保存为txt文本文件,txt文件名和音频文件名保持同一个名称,txt文件保存在和音频文件的同一个文件夹中...import AudioSegment # 挂载 Google Drive drive.mount('/content/drive') # 下载并加载 Whisper 模型 model = whisper.load_model...注意:在免费版Colab 中,笔记本最长可以运行12 小时 实测一个28分钟的mp3,在使用CPU的时候,耗时1小时,而如果改用T4 GPU,仅耗时3分钟。所以尽量使用GPU,会提速很多。

    10010

    BigTransfer (BiT):计算机视觉领域最前沿迁移学习模型

    -50 在本教程中,我们将展示如何加载其中一种 BiT 模型,并: 以原生方式使用模型或 针对目标任务微调模型以提高准确率 具体来说,我们将演示如何使用在基于 ImageNet-21k 上训练的 ResNet50...1000 个类的 ImageNet 标签空间 https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a 在 Colab 中,您可以通过网址加载图像并查看模型的预测结果...在 Colab 中,我们还对需要微调 tf_flowers数据集中的图像以进行了预测。其他教程中同样也使用了此数据集。...4) 保存微调后的模型以供日后使用 保存模型以供简化日后的操作。随后,您便可以采用与起初加载 BiT 模型时完全相同的方式,来加载已保存好的模型。...您还学习了如何加载任意一种 BiT 模型,以及如何在目标任务中对其进行微调并保存生成的模型。希望本文能对您有所帮助,并预祝您顺利完成微调!

    3.5K10

    xBIM 实战04 在WinForm窗体中实现IFC模型的加载与浏览

    DirectX 能理解可由显卡直接渲染的高层元素,如纹理和渐变,所以 DirectX 效率更高。...但是xBIM并没有提供专门针对传统 WinForm 技术的的模型查看器。如果确实需要在传统的 WinForm 窗体中也要加载并显示BIM(.ifc格式)模型文件该如何处理呢?   ...由于WinForm与WPF技术可以互通互用,所以本文介绍一种取巧的方式,在WinForm窗体中加载WPF控件,WPF控件中渲染BIM(.ifc格式)模型文件。具体操作步骤如下详细介绍。...五、在WinForm窗体中调用WPF查看器   添加一个WinForm窗体。左侧Panel中是 按钮区域,右侧Panel填充窗体剩余的所有区域。 ? 打开VS的工具箱,可以看到如下栏目 ?...后台逻辑:在第四步骤中创建了一个WPF用户控件,在此处实例化一个对象 private WinformsAccessibleControl _wpfControl; 在构造函数中初始化该对象并将对象添加到

    1.4K30

    用免费TPU训练Keras模型,速度还能提高20倍!

    在 IMDB 情感分类任务上训练 LSTM 模型是个不错的选择,因为 LSTM 的计算成本比密集和卷积等层高。...使用静态 batch_size * 8 训练 TPU 模型,并将权重保存到文件。 构建结构相同但输入批大小可变的 Keras 模型,用于执行推理。 加载模型权重。 使用推理模型进行预测。...激活 TPU 静态输入 Batch Size 在 CPU 和 GPU 上运行的输入管道大多没有静态形状的要求,而在 XLA/TPU 环境中,则对静态形状和 batch size 有要求。...在 CPU 上执行推理 一旦我们获得模型权重,就可以像往常一样加载它,并在 CPU 或 GPU 等其他设备上执行预测。...结论 本快速教程介绍了如何利用 Google Colab 上的免费 Cloud TPU 资源更快地训练 Keras 模型。

    1.7K40

    YOLOv8自定义数据集训练实现火焰和烟雾检测

    安装之前我需要连接我的 GPU: 在上图中选择 GPU 作为硬件加速器后单击“保存”按钮。 挂载 Google 驱动器,以便 colab 可以访问其文件。...在本例中,列表包含两个元素:“smoke”和“fire”。这些标签用于识别和区分模型正在学习检测或分类的对象。...这些信息对于模型训练过程至关重要,使模型能够从训练数据中学习并概括其知识,以在验证和推理过程中检测和分类新的、看不见的图像中的“烟”和“火”。...通过安装 Google Drive,您可以轻松读写文件、访问数据集以及在不同 Colab 会话之间保存模型检查点或其他重要文件,而无需在每次使用该平台时重新上传它们。...当您在 Jupyter Notebook 或 IPython 环境中执行此代码片段时,它将加载并显示具有指定路径和大小的图像。

    78711

    利用云计算资源进行深度学习(实作1):天边有朵GPU云

    然而,这些系统对于许多组织来说是极其昂贵和负担不起的。人工智能作为云应用程序开发中的一种服务,可以以更便宜的价格访问这些组织。...我们这个系列主要是基于Google的Colab Colaboratory,简称“Colab”,是谷歌研究的一个产品。...最重要的是,它不需要设置,您创建的notebook可以由您的团队成员同时编辑—就像您在谷歌文档中编辑文档一样。Colab支持许多流行的机器学习库,可以轻松地加载到您的notebook中。...赶紧选择成GPU,注意一定要保存! 右上角会显示一个状态, 等变成“已链接”后,立刻重新运行程序: 居然给我分配一个NVIDIA T4 GPU! 好了,今天实践到这里。...下次我们实际训练个模型,敬请关注吧!

    2K40

    Keras vs PyTorch,哪一个更适合做深度学习?

    在不同的框架里有不同的模型实现方法。让我们看一下这两种框架里的简单实现。本文提供了 Google Colab 链接。打开链接,试验代码。这可以帮助你找到最适合自己的框架。...在 Keras(TensorFlow)上,我们首先需要定义要使用的东西,然后立刻运行。在 Keras 中,我们无法随时随地进行试验,不过 PyTorch 可以。 ? 以上的代码用于训练和评估模型。...我们可以使用 save() 函数来保存模型,以便后续用 load_model() 函数加载模型。predict() 函数则用来获取模型在测试数据上的输出。...最后,保存和加载模型,以进行二次训练或预测。这部分没有太多差别。PyTorch 模型通常有 pt 或 pth 扩展。...Colab 链接: PyTorch:https://colab.research.google.com/drive/1irYr0byhK6XZrImiY4nt9wX0fRp3c9mx?

    36030

    Keras vs PyTorch,哪一个更适合做深度学习?

    在不同的框架里有不同的模型实现方法。让我们看一下这两种框架里的简单实现。本文提供了 Google Colab 链接。打开链接,试验代码。这可以帮助你找到最适合自己的框架。...在 Keras(TensorFlow)上,我们首先需要定义要使用的东西,然后立刻运行。在 Keras 中,我们无法随时随地进行试验,不过 PyTorch 可以。 ? 以上的代码用于训练和评估模型。...我们可以使用 save() 函数来保存模型,以便后续用 load_model() 函数加载模型。predict() 函数则用来获取模型在测试数据上的输出。...最后,保存和加载模型,以进行二次训练或预测。这部分没有太多差别。PyTorch 模型通常有 pt 或 pth 扩展。...Colab 链接: PyTorch:https://colab.research.google.com/drive/1irYr0byhK6XZrImiY4nt9wX0fRp3c9mx?

    1.6K20
    领券