在 FreeWheel 的核心业务系统中,我们使用 MySQL 来存储数据。但随着数据量的不断增加,原有数据库已经无法满足如今的业务需求。经过前期大量的调研,我们决定将 MySQL 中的部分表迁移到 AWS Dynamodb 中。本文主要介绍从关系型数据库平顺迁移到非关系型数据库的实践经验。
DynamoDB 是 AWS 独有的完全托管的 NoSQL Database。它的思想来源于 Amazon 2007 年发表的一篇论文:Dynamo: Amazon’s Highly Available Key-value Store。在这篇论文里,Amazon 介绍了如何使用 Commodity Hardware 来打造高可用、高弹性的数据存储。想要理解 DynamoDB,首先要理解 Consistent Hashing。Consistent Hashing 的原理如下图所示:
DynamoDB 是Amazon最新发布的NoSQL产品,那什么是DynamoDB呢?
DynamoDB 属于AWS 专有的 NoSQL 数据库服务。其实和Mongod类似。
在不那么遥远的旧 IT 时代,有这样一个段子——假如把数据库们”聚在一起“开会”。 Oracle: 我们需要企业级数据库。 MySQL: Oracle 不开源。 PostgreSQL: MySQL 的
常见实现:hash,时间复杂度可以接近 O(1);B 树或变种:时间复杂度接近 O(log(n))。
本文档主要介绍如何实时迁移AWS DynamoDB数据到腾讯云TcaplusDB。TcaplusDB是腾讯推出的一款全托管NoSQL数据库服务,专为游戏设计,立志于打造面向全球的精品云存储产品,提供高性能、低成本、易扩展、稳定、安全的存储服务。TcaplusDB与DynamoDB类似,数据模型采用的是KV和文档两种类型,以表为组织管理单位。相对DynamoDB表的schema-free模式,TcaplusDB采用的是schema架构,即需要用户提前定义好表的schema,但与传统关系型表结构定义相比,TcaplusDB支持更丰富的数据结构,如支持多层嵌套,满足多样化的数据定义需求。
在发布的Apache Hudi 0.10.0版本中共解决了388个issue,包括众多重磅特性支持以及Bug修复。
一 AWS DynamoDb在java中的使用【建立连接】 accessKey = “xxxxxxx”; secretKey = “xxxxxxxx” if (StringUtils.isNotBlank(accessKey) && StringUtils.isNotBlank(secretKey)) { logger.debug("accessKey和secretKey有值,不是写在系统配置里的方式"); bac = new BasicAWSCredentials(accessKey, se
最近在工作中我需要把数据从公共的 Data Warehouse(数据仓库)导出来,放到属于我们 team 自己账号的云端存储资源中去,然后再在我们的应用中查询这样的资源。需要导出数据是因为直接从 Data Warehouse 查询数据是一个缓慢而且异步的过程,而我们的应用数据查询需要实时性。现在要解决这个问题有一些 AWS 的服务可供我们可以选择,基本上分成了两大类:
介绍 本文提供了一个易于理解和有用的一组有关当前可用NoSQL数据库的信息。 可扩展数据架构 可扩展数据架构已发展用于提高整体系统效率并降低运营成本。 具体的NoSQL数据库可能具有不同的拓扑要求,但
了解如何在你的系统设计中使用Dynamo系列、AWS DynamoDB、Cassandra和SimpleDB ◆ 在我们开始之前的快速介绍 早在2004年,亚马逊正在运行一个大型的分布式Oracle数据库集群。想象一下,大量的服务器,运行大量笨重的闭源专有软件,并没有真正关注规模和可用性。他们在当时的规模下挑战了商业数据库的极限。 重要的是要了解这是个不同的时代。分布式系统并不常见,关系型数据库是唯一的主要OLTP数据库,最重要的是,当时没有足够的人或数据在线。 看到互联网在过去十年或二十年里的爆炸性
Cloud Spanner是Google Megastore系统的继承者,Spanner表现出远超前辈的能力。Spanner首次是在Google内部数据中心中出现,而在2017年才对外发布测试版并加入了SQL能力。如今已经在Google云平台上架并拥有大量各个行业的用户。Cloud Spanner数据库是全球范围分布式的关系型/事务数据库,并且Google承诺Cloud Spanner拥有高吞吐量、低延迟和99.999%的高可用性。 接触Cloud Spanner 第一次接触到Google Cloud Sp
在将产品设计为自助式开发人员工具时,通常会存在限制 - 但最常见的限制之一可能是规模。确保我们的产品 Jit(一个安全即代码 SaaS 平台)是为扩展而构建的,这不是我们可以事后才想到的,它需要从第一行代码开始设计和处理。
AWS IoT 平台为了保证终端设备通信的安全性,终端设备与 AWS IoT 平台的 MQTT 通信使用基于证书的 TLS 1.2 双向认证体系。即 IoT 平台会验证当前设备使用的证书是否可信,同时,终端设备也会验证 IoT 平台使用的 CA 证书是否可信。
作为一款面向开发者的低代码平台,码匠提供了丰富的数据连接能力,能帮助用户快速、轻松地连接和集成多种数据源,包括关系型数据库、非关系型数据库、API 等。平台提供了可视化的数据源配置界面和强大的数据映射和转换能力,用户可以将数据源与应用进行无缝连接,实现数据的快速读取和写入。同时,平台还支持多种数据格式的导入和导出,用户可以将数据快速导入到应用中,或将应用中的数据导出到本地进行分析和处理。此外,平台还提供强大的数据监控和报警功能,用户可以实时监控数据的状态和变化,并在数据异常时接收预警信息,保障数据的安全性和可靠性。本篇文章将继续带大家了解码匠中的数据连接。
以上两种办法,肯定是第二种办法比较方便,而且只进行一次update操作,而第一种办法,先进行get操作,然后put操作,进行了两次读写。
刚刚出现NOSQL这个概念的时候,很多人都是似而非的字面理解成"不是SQL", 与传统的关系型数据库是两个完全独立的阵营,实际上完全不是这么回事。个人更倾向于理解NOSQL的诞生更多的是为了补充关系型数据库的短板,满足现下互联网海量数据、高并发、低延迟和非结构化数据易扩展等需求。
Chris Richardson 微服务系列翻译全7篇链接: 微服务介绍 构建微服务之使用API网关 构建微服务之微服务架构的进程通讯 微服务架构中的服务发现 微服务之事件驱动的数据管理(本文) 微服务部署 重构单体应用为微服务 原文链接:Event-Driven Data Management for Microservices ---- 微服务与分布式数据管理问题 单体应用一般只有一个关系型数据库,这样的好处是可以实现 ACID 保证: 原子性(Atomicity):原子粒度的更改 一致性(Consi
微服务和分布式数据管理的问题 单体应用程序通常具有单个关系数据库。 使用关系数据库的一个主要优点是您的应用程序可以使用ACID事务,这些事务提供了一些重要的保证: 原子性 - 原子性变化 一致性 - 数据库的状态总是一致的 隔离 ----即使并发执行事务,它似乎是连续执行的 持久性 - 一旦交易已经提交,它不会被撤销 因此,您的应用程序可以简单地开始事务,更改(插入,更新和删除)多个行,并提交事务。 使用关系数据库的另一大优点是它提供SQL,它是一种丰
DynamoDB 是亚马逊 AWS 的一种高性能、全托管的 NoSQL 数据库服务。作为一种数据源,DynamoDB 能够提供高度可扩展性、低延迟和可靠性。它支持多种数据类型和数据模型,包括键-值、文档和图形数据。DynamoDB 的数据模型非常灵活,可以根据需要对数据进行读取和写入。此外,DynamoDB 还提供了强大的数据查询和扫描功能,可以根据指定的条件快速查找和获取数据。DynamoDB 还支持 ACID 事务,可以确保数据一致性和完整性。DynamoDB 可以轻松地与其他 AWS 服务集成,例如 Lambda、API Gateway、Elasticsearch 等,可以构建高效、高可用的应用程序和服务。
DQL:查询语句 1. 排序查询 * 语法:order by 子句 * order by 排序字段1 排序方式1 , 排序字段2 排序方式2... * 排序方式: * ASC:升序,默认的。 * DESC:降序。 * 注意: * 如果有多个排序条件,则当前边的条件值一样时,才会判断第二条件。 2. 聚合函数:将一列数据作为一个整体,进行纵向的计算。 1. count:计算个数 1. 一般选
在第 1 部分中,我们构建了一个逻辑模型,用于说明写入时复制表在 Apache Hudi 中的工作方式,并提出了许多关于并发控制类型、时间戳单调性等方面的一致性问题。在第 2 部分中,我们研究了时间戳冲突、它们的概率以及如何避免它们(并符合 Hudi 规范)。在第 3 部分中,我们将重点介绍模型检查 TLA+ 规范的结果,并回答这些问题。
数据库设计是构建可靠和高效系统的关键步骤之一。设计范式是一种规范,它帮助开发人员减少数据冗余、提高数据一致性和完整性。本文将探讨数据库设计范式的重要性,并通过基于MySQL的表设计示例来佐证其应用。
为了建立冗余较小、结构合理的数据库,设计数据库时必须遵循一定的规则。在关系型数据库中这种规则就称为范式。
【不满足第一范式】:1.主键重复。2. StuInfo字段可以再分 |StuId(主键学号)| StuName (姓名)| StuInfo(学生信息)| |:–:|:–:|:–:| |S001| 张三| 信息学院 大三| |S001| 李四| 商学院 大二|
作为地球上最坚硬的物质,钻石的用途令人惊讶地有限:锯片、钻头、结婚戒指和其他工业应用。 相比之下,自然界中较软的金属之一--铁,可以被改造成无尽的应用:最锋利的刀片、最高的摩天大楼、最先进的汽车, 巨大的轮船,而且很快,如果埃隆-马斯克是对的,就会有最有效的电动车电池。 换句话说,铁之所以有令人难以置信的用处,是因为它既是刚性的又是柔性的。 同样,数据库只有在既严格又灵活的情况下才对今天的实时分析有用。 传统的数据库,由于其完全灵活的结构,是很脆的。无模式的NoSQL数据库也是如此,它们能够摄取大量的数据,
有问题的时候,我经常回来博客园寻找答案,久而久之,总结了一些东西。 妄自菲薄,请大家多指出错误,并给出意见 数据库设计三范式基本原则 第一范式:数据库表中的字段都是单一属性的,不可再分。这个单一属性由基本类型构成,包括整型、实数、字符型、逻辑型、日期型等。 也就是说,绝对不要出现下面的情况
Hudi 更复杂并不意味着 Iceberg 更好,只是需要更多的工作来内化设计。复杂性的一个关键原因是 Hudi 在核心规范中加入了更多功能。Iceberg 目前只是一种表格式,而 Hudi 是一种具有多种查询类型的完全成熟的托管表格式。如果精通 Delta Lake 内部结构,会发现 Hudi 的设计与 Delta Lake 的设计有许多相似之处。
在数据库设计中,三范式(3NF)是一种关系型数据库设计规范,通过消除数据冗余和依赖,旨在提高数据库的数据存储效率和数据完整性。本文将深入讨论数据库的三范式,包括每一范式的定义、优点以及在实际数据库设计中的应用。
本书主要介绍如何使用微服务构建应用程序,这是本书的第五章。第一章介绍了微服务架构模式,讨论了使用微服务的优点与缺点。第二和第三章描述了微服务架构内通信方式的对比。第四章探讨了与服务发现相关的内容。在本章中,我们稍微做了点调整,研究微服务架构中出现的分布式数据管理问题。
问题2:在“学生表”中查询“所在系”是“计算机”的学生所有信息,并按“学号”从小到大排序
MySQL 数据库学习 MySQL数据库软件 安装 … 配置 MySQL服务启动 手动。 cmd–> services.msc 打开服务的窗口 使用管理员打开cmd net start mysql //启动mysql的服务 net stop mysql //关闭mysql服务 MySQL登录 mysql -uroot -p密码 mysql -hip -uroot -p连接目标的密码 mysql --host=ip --user=root --password=连接目标的密码 MySQL退出 exit qu
一、通用 mapper 简介 最初我们手写 Mybatis 的 mapper.xml 文件,然后使用 Mybatis-generator 逆向工程生成 mapper.xml 文件,再发展到使用通用 mapper,支持自动生成 EntityMapper、mapper.xml 文件。 二、入门 Demo 1.引入依赖 <dependency> <groupId>tk.mybatis</groupId> <artifactId>mapper</artifactId> <versio
MySQL的索引分类问题一直让人头疼,几乎所有的资料都会给你列一个长长的清单,给你介绍什么主键索引、单值索引,覆盖索引,自适应哈希索引,全文索引,聚簇索引,非聚簇索引等……给人的感觉就是云里雾里,好像MySQL索引的实现方式有很多种,但是都没有一个清晰的分类。所以本人尝试总结了一下如何给MySQL的索引类型分类,便于大家记忆,由于MySQL中支持多种存储引擎,在不同的存储引擎中实现略微有所差距,下文中如果没有特殊声明,默认指的都是InnoDB存储引擎。
查询有能够对应班级的学生以及班级信息,按照班级进行排序,若为同班级按照id进行排序。
一个列或者列集,唯一标识表中的一条记录。超键可能包含用于唯一标识记录所不必要的额外的列,我们通常只对仅包含能够唯一标识记录的最小数量的列感兴趣。
面试的时候肯定会问这一个问题,mysql为什么会选择b+树作为索引呢?而不选择其他索引,例如b树?hash?
为发送通知,需收集各种信息如移动设备令牌、email、phone和第三方通道信息。
自 DataGrip 2023.3 发布以来,已整合 Lets-Plot 库,实现数据可视化。该可视化功能可用于所有三种类型的网格:
Spring框架对JDBC的简单封装。提供了一个JDBCTemplate对象简化JDBC的开发
Spring Data 的委托是为数据访问提供熟悉且符合 Spring 的编程模型,同时仍保留着相关数据存储的特殊特征。
小伙伴想精准查找自己想看的MySQL文章?喏 → MySQL江湖路 | 专栏目录 干饭人,干饭魂,吃饭干饭要拿盆 上周三中午和公司另一个部门的春哥一起干饭,就在公司门口杏坛路上的丰源包子铺~ 不得不说和我在老家小时候吃的蒸包真是一个味儿,天天吃都不腻,唯一缺点就是老家包子一块钱个,这家2块5一个🙃。不得不说,真吃不起。。。 饭桌上春哥问我面试时会不会问数据库的三大范式,回答的都咋样? 因为在他最近面试问这问题时,发现很多同学对范式概念很模糊,有人倒是准备了,直接背起标准答案来。。他
继承是面向对象开发时经常用到的,但是SQL Server 数据库不具备继承,那么怎么办能?我们可以利用如下三种方法:
追求可以在水平方向上无限扩展的大规模分布式数据库,已经导致了专业数据库的爆炸式增长,实际上发布了数十种不同的数据模型和针对超特定用例的整个产品。
MySQL数据类型定义了数据的大小范围,因此使用时选择合适的类型,会降低表占用的磁盘空间,间接减少了磁盘I/O的次数,提高表的访问效率,而且索引的效率也和数据的类型息息相关。
共享锁也称为读锁,相互不阻塞,多个客户在同一时刻可以同时读取同一个资源而不相互干扰。
5G时代,业务数据越来越丰富,业务使用MySQL数据库作为后台存储,存储引擎使用InnoDB,会带来哪些挑战?如何针对公司业务特点及MySQL数据库特性,制定若干数据库使用规范供一线RD在设计业务时参考部分内容要求强制执行。本文从介绍MySQL相关关键基础架构,并结合实际案例介绍表和索引的设计技巧,并对规范中重点内容做详细解读。
领取专属 10元无门槛券
手把手带您无忧上云