一、背景 平时业务开发可能有这样的一个场景:一个集合有M个元素,需要每N个元素一起处理。 虽然这个功能非常简单,直接用for循环或者while可以写,其实可以封装成工具类,方便后续复用。...二、源码 单元测试 三、总结 遇到一些可以复用的场景可以考虑封装成工具类。 测试时可以考虑用EasyRandom来构造测试对象,省时省力。
有时候我们希望找到一个提交历史,然后从这个提交历史中创建一个分支。很多人应该都会使用命令行工具来做,其实 IDEA 已经帮你做了。IDEA首先在 IDEA 中找到 Git,然后找到你的提交历史。...在找到提交历史后,可以选择鼠标的右键。然后选择新分支。你就可以从当前的提交历史中来创建一个新的分支了。Source Tree使用 SourceTree 也是一样的。...通过在提交历史中单击右键,然后选择分支,你就可在当前指定的提交历史中来创建一个新的分支了。https://www.ossez.com/t/git/13981
题目:从长度为m的int数组中随机取出n个元素,每次取的元素都是之前未取过的 Fisher-Yates洗牌算法是由 Ronald A.Fisher和Frank Yates于1938年发明的,后来被Knuth...等概率: 洗牌算法有些人也称等概率洗牌算法,其实发牌的过程和我们抽签一样的,大学概率论讲过抽签是等概率的,同样洗牌算法选中每个元素是等概率的。...用洗牌算法思路从1、2、3、4、5这5个数中,随机取一个数 4被抽中的概率是1/5 5被抽中的概率是1/4 * 4/5 = 1/5 2被抽中的概率是1/3 * 3/4 *..., Knuth 和 Durstenfeld 在Fisher 等人的基础上对算法进行了改进,在原始数组上对数字进行交互,省去了额外O(n)的空间。...该算法的基本思想和 Fisher 类似,每次从未处理的数据中随机取出一个数字,然后把该数字放在数组的尾部,即数组尾部存放的是已经处理过的数字。
#第一个文件 Order.txt 中的第3列修改为另一个文件 ip2.txt,或者第n列 #!.... ----------------------# Oy=( 1111111 # 默认从0开始,占位 `cat -n Order.txt | awk -F"|" '{print $3}'| sed...cat ip2.txt | awk -F"--" '{print $1}' | sed "s/ //g"` ) echo " 原来数据总量:${#Oy[*]} 更新数据总量:${#up[*]} 被修改的文件
#include void sort(int*x,int n) { int i,j,k,t; for(i=0;in-1;i++) { k=i; for(j=i+1;jn;j+...numbers:"); for(i=0;i<10;i++) scanf("%d",p++); p=a; sort(p,10); for(;p<a+10;p++) { printf("%d\n"
问题描述在pandas的DataFrame格式数据中,每一列可以是不同的数据类型,如数值型、字符串型、日期型等。而ndarray格式数据需要每个元素都是相同类型的,通常为数值型。...= series_a + 1上述代码中,我们创建了一个新的变量series_a,将列A转换为ndarray并使用pd.Series()将其转换为pandas的Series数据格式。...这种方法在数据处理和分析中是常见且实用的技巧,希望本文对你有所帮助。在实际应用场景中,我们可能会遇到需要对DataFrame中的某一列进行运算的情况。...切片操作:通过指定切片范围来访问数组的子集。切片操作使用冒号:来指定开始和结束位置,并可指定步长。例如a[1:4]可以访问数组a的第2个元素到第4个元素。...例如a[[0, 2, 4]]可以访问数组a中的第1个、第3个和第5个元素。ndarray是numpy库中的一个重要数据结构,用于存储和处理多维同类型数据。
2021-08-13:给定一个每一行有序、每一列也有序,整体可能无序的二维数组 ,在给定一个正数k,返回二维数组中,最小的第k个数。 福大大 答案2021-08-13: 二分法。...int{{1, 2, 3}, {2, 3, 4}, {3, 4, 5}} ret := kthSmallest2(matrix, 8) fmt.Println(ret) } // 二分的方法...func kthSmallest2(matrix [][]int, k int) int { N := len(matrix) M := len(matrix[0]) left...+ ((right - left) >> 1) // 在矩阵中真实出现的数,谁最接近mid info := noMoreNum(matrix...int, n2 int) *Info { ans := &Info{} ans.near = n1 ans.num = n2 return ans } func noMoreNum
这是因为单位阵在矩阵乘法中起到了类似于数学中的乘法单位元的作用。 第k对角线¶ 在一个n×n的方阵中,第k对角线是指从左上角到右下角的斜线,其上的元素位于主对角线(k=0)上方或下方k个位置。...结果将返回一个一维数组,其中包含每一列元素的和: [5, 7, 9] 因此,axis=0 是逐列求和,对每一列的元素进行求和,返回一个包含每一列和的一维数组。...然后,使用这个数组作为数据创建了一个DataFrame对象a1。index参数指定了使用上面创建的日期范围作为索引,columns参数指定了列标签为'A'、'B'、'C'和'D'。...d2 = d[4:] 这行代码通过选择 DataFrame d 的第 5 行及以后的行创建了一个新的 DataFrame 对象 d2。...a['four'] = 'bar' 这行代码在 DataFrame a 中增加了一个名为 'four' 的新列,并将其所有行的值设置为 'bar'。
) print("pandas use numpy function result:",np.abs(df),sep='\n') 5.4.2 DataFrame对象的apply方法 需要2个参数:第1个参数的数据类型为函数对象...apply方法是对DataFram中的每一行或者每一列进行映射。 ?...image.png 5.5 排序和排名 使用DataFrame对象的sort_valuse方法,需要两个参数:第1个参数by是根据哪一行或列排序; 第2个参数axis为0或1,默认为0,0为按列排序,...经过第6步之后,为什么原来的dataframe数据中Mjob和Fjob列的数据仍然是小写的?...df[['Mjob','Fjob']].applymap(str.title) Step 7.创建一个名为majority函数,并根据age列数据返回一个布尔值添加到新的数据列,列名为 legal_drinker
Insert Insert用于在DataFrame的指定位置中插入新的数据列。默认情况下新列是添加到末尾的,但可以更改位置参数,将新列添加到任何位置。...Ture表示允许新的列名与已存在的列名重复 接着用前面的df: 在第三列的位置插入新列: #新列的值 new_col = np.random.randn(10) #在第三列位置插入新列,从0开始计算...Sample Sample用于从DataFrame中随机选取若干个行或列。...比如说给定三个元素[2,3,6],计算相差百分比后得到[NaN, 0.5, 1.0],从第一个元素到第二个元素增加50%,从第二个元素到第三个元素增加100%。...1名,下一个人是第 2 名 method=first: 相同值会按照其在序列中的相对位置定值 ascending:正序和倒序 对df中列value_1进行排名: df['rank_1'] = df['value
输入:grid = [[4,3,2,-1],[3,2,1,-1],[1,1,-1,-2],[-1,-1,-2,-3]] 输出:8 解释:矩阵中共有 8 个负数。...} } return count; } } 第一个for...循环控制行,第二个while循环来二分查找, 让Low=high 结束找到第一个负数开始出现的下标(此时 Low=high=第一个负数下标), 让count+(总长度-low)
Numpy库 Numpy最重要的一个特点是就是其N维数组对象,即ndarray,ndarray是一个通用的同构数据多维容器,其中的所有元素必须是相同类型的。...当我们没有为数据指定索引时,Series会自动创建一个0到N-1(N为数据的长度)的整数型索引。可以通过Series的values和index属性获取其数组的值和对应的属性。...也可以在创建Series的时候为值直接创建索引。 b、通过字典的形式来创建Series。 (3)获取Series中的值 通过索引的方式选取Series中的单个或一组值。...2、DataFrame (1)概念: DataFrame是一个表格型的数据结构,含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。...Pandas基本功能 1、重新索引 Pandas对象的一个方法就是重新索引(reindex),其作用是创建一个新的索引,pandas对象将按这个新索引进行排序。对于不存在的索引值,引入缺失值。
Insert Insert用于在DataFrame的指定位置中插入新的数据列。默认情况下新列是添加到末尾的,但可以更改位置参数,将新列添加到任何位置。...Ture表示允许新的列名与已存在的列名重复 在第三列的位置插入新列: #新列的值 new_col = np.random.randn(10) #在第三列位置插入新列,从0开始计算 df.insert(2...Sample Sample用于从DataFrame中随机选取若干个行或列。...比如说给定三个元素[2,3,6],计算相差百分比后得到[NaN, 0.5, 1.0],从第一个元素到第二个元素增加50%,从第二个元素到第三个元素增加100%。...1名,下一个人是第 2 名 method=first: 相同值会按照其在序列中的相对位置定值 ascending:正序和倒序 对df中列value_1进行排名: In [115]: df Out[115
新构造的属性线损率计算公式 如下: 线损率=(供入电量-供出电量)/供入电量 线损率的范围一般在3%~15%,如果远远超过该范围,就可以认为该条线路的大用户很大可能 存在窃漏电等用电异常行为。...axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作; axis=1,表示沿着第1轴进行操作,即对每一行进行操作。...,其中zeros()函数用于创建一个元素值都为0的数组;ones()函数用于创建一个元素值都为1的数组;empty()函数用于创建一个元素值都为随机数的数组。...在创建Series类对象或DataFrame类对象时,既可以使用自动生成的整数索引,也可以使用自定义的标签索引。无论哪种形式的索引,都是一个Index类的对象。...使用[]访问数据 变量[索引] 需要说明的是,若变量的值是一个Series类对象,则会根据索引获取该对象中对应的单个数据;若变量的值是一个DataFrame类对象,在使用“[索引]”访问数据时会将索引视为列索引
在一个有N步的计算模型中,如果记载第N步输出RDD的节点发生故障,数据丢失,我们可以从第N-1 步的RDD出发,再次计算,而无需重复整个N步计算过程。...例如在一个有N步的计算模型中,第N-1 步的RDD就是第N步RDD的父RDD,相反则是子RDD。...转换(Transformation) 转换是用来把一个RDD转换成另一个RDD Map 它把一个RDD中的所有数据通过一个函数,映射成一个新的RDD,任何原 RDD中的元素在新RDD中都有且只有一个元素与之对应...而右侧的DataSet却提供了详细的结构信息与每列的数据类型 其次,由于DataSet存储了每列的数据类型。所以,在程序编译时可以执行类型检测。...DataFrame每一行的类型固定为 Row,他可以被当作DataSet[Row]来处理,我们必须要通过解析才能获取各列的值。
Pandas Series.reset_index()函数的作⽤是:⽣成⼀个新的DataFrame或带有重置索引的Series。...七、apply() 函数使用方法 如果需要将函数应⽤到DataFrame中的每个数据元素,可以使⽤ apply() 函数以便将函数应⽤于给定dataframe中的每⼀⾏。...Pandas dataframe.append()函数的作⽤是:将其他dataframe的⾏追加到给定的dataframe的末尾,返回⼀个新的dataframe对象。...创建第⼆个Dataframe df2 =pd.DataFrame({"a":[1, 2, 3],"b":[5, 6, 7]}) # 现在将df2附加到df1的末尾 df1.append(df2) 第⼆个...十、数据透视表应用 透视表是⼀种可以对数据动态排布并且分类汇总的表格格式,在pandas中它被称作pivot_table。
Numpy中的一维数组也有隐式定义的整数索引,可以通过它获取元素值,而Series用一种显式定义的索引与元素关联。...如果没有传递索引值,那么默认的索引将是范围(n),其中n是数组长度,即 [0,1,2,3…,range(len(array))-1] 。...DataFrame既有行索引,也有列索引,它可以被看做为一个共享相同索引的Series的字典。它的列的类型可能不同,我们也可以把Dataframe想象成一个电子表格或SQL表。....png] 2.1 从列表创建DataFrame 从列表中很方便的创建一个DataFrame,默认行列索引从0开始。...(s) [d000f665a045ff8a6146469a8b7ca06b.png] 2.2 从字典创建DataFrame 从字典创建DataFrame,自动按照字典进行列索引,行索引从0开始。
DataFrame是一个类似于Excel表格的数据结构,索引包括行索引和列索引,每列可以是不同的数据类型(String、int、bool、...)...,DataFrame的每一列(行)都是一个Series,每一列(行)的Series.name即为当前列(或行)索引名。...(1)创建DataFrame DataFrame是一个二维结构,较为常见的创建方法有: 通过二维数组结构创建 通过字典创建 通过读取既有文件创建 # 不指定行索引、列索引 arr = np.random.rand...,获取的永远是列,索引只会被认为是列索引,而不是行索引;相反,第二种方式没有此类限制,故在使用中容易出现问题。...的方法,这个方法会返回一个新的DataFrame,而不会改变原有的DataFrame t = pd.Series([1, 1, 2], index=list("ACD"), name='t') df3
pd.DataFrame() # 自己创建数据框,用于练习 pd.read_csv(filename) # 从CSV⽂件导⼊数据 pd.read_table(filename) # 从限定分隔符的⽂...df.head(n) # 查看DataFrame对象的前n⾏ df.tail(n) # 查看DataFrame对象的最后n⾏ df.shape() # 查看⾏数和列数 df.info() # 查看索引...Series对象的唯⼀值和计数 df.apply(pd.Series.value_counts) # 查看DataFrame对象中每⼀列的唯⼀值和计数 df.isnull().any() # 查看是否有缺失值...'] # 按索引选取数据 df.iloc[0,:] # 返回第⼀⾏ df.iloc[0,0] # 返回第⼀列的第⼀个元素 df.loc[0,:] # 返回第⼀⾏(索引为默认的数字时,⽤法同df.iloc...']) data.apply(np.mean) # 对DataFrame中的每⼀列应⽤函数np.mean data.apply(np.max,axis=1) # 对DataFrame中的每⼀⾏应⽤函数
可以在创建数组的时候np.array(ndmin=)设置最小维度 ndarray.shape 数组的维度,对于矩阵,n行m列,不改变原序列 ndarray.size 数组元素总个数...() 创建指定行列的随机矩阵,元素为0到1之间 np.random.rand(10, 10) 创建指定形状(示例为10行10列)的随机数组(范围在0至1之间) np.random.uniform...(0, 100)创建指定范围内的一个数 np.random.randint(0, 100)创建指定范围内的一个整数 np.random.randint(10,size=(3,3))创建指定范围..."F"-按列、"A"-原顺序、"k"-元素在内存中痴线顺序 △ n.flat()数组元素迭代器。...Ctrl+Shift+- #将代码块合并:使用Shift选中需要合并的框,Shift+m #在代码块前增加新代码块,按a;在代码块后增加新代码块,按b; #删除代码块,按dd #运行当前代码块,Ctrl
领取专属 10元无门槛券
手把手带您无忧上云