首页
学习
活动
专区
圈层
工具
发布

基于 StarRocks + Iceberg,TRM Labs 构建 PB 级数据分析平台实践

(图 1,展示了 TRM 第一代数据平台如何处理面向用户的分析,并通过 Postgres 和 BigQuery 路由查询)二、从 BigQuery 迈向新一代开放式数据湖仓尽管 BigQuery 多年来在客户分析场景中表现稳定...我们需要在多个站点之间共享区块链分析数据,而 BigQuery 作为托管服务,并不适合这一需求。同时,面向用户的查询工作负载也需要全新的扩展方式。...测试结果显示,StarRocks 在多个维度上的表现始终优于其他引擎(见下方图 2)。Trino:一款开源的分布式查询引擎,设计用于处理超大规模数据集的查询任务。...3.3.1 点查 / 过滤的实验探索图 2 展示了在该类负载下的测试结果:对 2.57 TB 数据集执行点查与范围查找(range lookup)操作,评估查询子集的响应性能。...在本轮测试中,数据集扩展至 2.85 TB,查询包含 SUM、COUNT、GROUP BY 等聚合操作,并叠加数组与日期范围过滤条件。测试结果如下:StarRocks:在复杂聚合负载下表现出色。

29110

【传感器融合】开源 | EagerMOT在KITTI和NuScenes数据集上的多个MOT任务中,性能SOTA!

获取完整原文和代码,公众号回复:10031344868 论文地址: link: http://arxiv.org/pdf/2104.14682v1.pdf 代码: 公众号回复:10031344868 来源...3D空间和时间内定位周围物体,来进行运动规划和导航。...现有的方法依靠深度传感器(如激光雷达)在3D空间中探测和跟踪目标,但由于信号的稀疏性,只能在有限的传感范围内进行。另一方面,相机仅在图像域提供密集和丰富的视觉信号,帮助定位甚至遥远的物体。...在本文中,我们提出了EagerMOT,这是一个简单的跟踪公式,从两种传感器模式集成了所有可用的目标观测,以获得一个充分的场景动力学解释。...使用图像,我们可以识别遥远的目标,而使用深度估计一旦目标在深度感知范围内,允许精确的轨迹定位。通过EagerMOT,我们在KITTI和NuScenes数据集上的多个MOT任务中获得了最先进的结果。

2K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    「数据仓库技术」怎么选择现代数据仓库

    大多数现代数据仓库解决方案都设计为使用原始数据。它允许动态地重新转换数据,而不需要重新摄取存储在仓库中的数据。 在这篇文章中,我们将深入探讨在选择数据仓库时需要考虑的因素。...如果您使用的数据集的范围是数百tb或pb,那么强烈建议使用非关系数据库。这类数据库的架构支持与庞大的数据集的工作是根深蒂固的。 另一方面,许多关系数据库都有非常棒的经过时间验证的查询优化器。...让我们看看一些与数据集大小相关的数学: 将tb级的数据从Postgres加载到BigQuery Postgres、MySQL、MSSQL和许多其他RDBMS的最佳点是在分析中涉及到高达1TB的数据。...Amazon Redshift、谷歌BigQuery、SnowflPBake和基于hadoop的解决方案以最优方式支持最多可达多个PB的数据集。...除此之外,Snowflake还提供了几乎任何规模和并发性的多个虚拟仓库,可以同时对相同的数据进行操作,同时完全强制执行全局系统范围的事务完整性,并保持其可伸缩性。

    5.8K31

    基于时间维度水平拆分的多 TiDB 集群统一数据路由联邦查询技术的实践

    同时,本文分享了具体的技术实现,包括如何在多集群环境下进行数据路由、事务管理及跨集群查询,帮助企业在确保稳定性的基础上,支持更高的并发和更复杂的查询需求。...,即按交易时间维度拆分为多个物理集群,不同集群可根据 SLA 等级对应不同的资源规格和副本数,并通过应用层的数据路由、联邦查询组件实现跨库背景下的 SQL 访问快速定位、结果集归并、路由策略管理等核心功能...梳理后共包括以下几类访问模式:按时间路由-分页追加归并:对应各类分页查询场景,需要根据查询时间范围确定涉及的集群范围,再结合分页控制类信息(如起始记录数、每页记录数),定位当前分页所在的集群,并对跨集群场景下的结果集进行追加归并...、月度/年度收支统计等,需根据查询时间范围确定涉及的集群范围,并将多个集群的查询结果在组件的结果集归并模块中按分组条件进行汇总归并;轮询路由-追加/汇总归并:对应单笔/多笔查询、修改场景,由于输入参数能够定位数据的只有非交易时间类字段...第一段先通过请求参数中的业务类型、查询的日期范围,结合动态计算的每个集群当前的上下界时间,确定当前请求涉及的集群范围。

    48910

    7大云计算数据仓库

    云计算数据仓库通常包括一个或多个指向数据库集合的指针,在这些集合中收集生产数据。云计算数据仓库的第二个核心元素是某种形式的集成查询引擎,使用户能够搜索和分析数据。这有助于数据挖掘。...对于希望使用标准SQL查询来分析云中的大型数据集的用户而言,BigQuery是一个合理的选择。...•Apache Spark引擎也与Db2集成在一起,这意味着用户可以针对数据仓库使用SQL查询和Spark查询,以获取见解。...•动态数据屏蔽(DDM)提供了非常精细的安全控制级别,使敏感数据可以在进行查询时即时隐藏。...•与仅在本地运行SQL Server相比,微软建立在庞大的并行处理体系结构上,该体系结构可使用户同时运行一百多个并发查询。

    6.6K30

    Tapdata Connector 实用指南:数据入仓场景之数据实时同步到 BigQuery

    BigQuery 在企业中通常用于存储来自多个系统的历史与最新数据,作为整体数据集成策略的一部分,也常作为既有数据库的补充存在。...其优势在于: 在不影响线上业务的情况下进行快速分析:BigQuery 专为快速高效的分析而设计, 通过在 BigQuery 中创建数据的副本, 可以针对该副本执行复杂的分析查询, 而不会影响线上业务。...数据集中存储, 提高分析效率:对于分析师而言,使用多个平台耗时费力,如果将来自多个系统的数据组合到一个集中式数据仓库中,可以有效减少这些成本。...访问账号(JSON):用文本编辑器打开您在准备工作中下载的密钥文件,将其复制粘贴进该文本框中。 数据集 ID:选择 BigQuery 中已有的数据集。...基于 BigQuery 特性,Tapdata 做出了哪些针对性调整 在开发过程中,Tapdata 发现 BigQuery 存在如下三点不同于传统数据库的特征: 如使用 JDBC 进行数据的写入与更新,则性能较差

    9.4K10

    Apache Hudi 0.14.0版本重磅发布!

    我们鼓励用户在采用 0.14.0 版本之前查看重大特性、重大变化和行为变更。 迁移指南 在 0.14.0 版本进行了一些更改,例如从 ".aux" 文件夹中删除压缩计划以及引入新的日志块版本。...重大变化 Spark SQL INSERT INTO 行为 在 0.14.0 版本之前,Spark SQL 中通过 INSERT INTO 摄取的数据遵循 upsert 流程,其中多个版本的记录将合并为一个版本...由于在查找过程中从各种数据文件收集索引数据的成本很高,布隆索引和简单索引对于大型数据集表现出较低的性能。而且,这些索引不保留一对一的记录键来记录文件路径映射;相反,他们在查找时通过优化搜索来推断映射。...Google BigQuery 同步增强功能 在 0.14.0 中,BigQuerySyncTool 支持使用清单将表同步到 BigQuery。与传统方式相比,这预计将具有更好的查询性能。...用于流式读取的动态分区修剪 在 0.14.0 之前,当查询具有恒定日期时间过滤的谓词时,Flink 流式读取器无法正确修剪日期时间分区。

    2.4K30

    MESA:谷歌揭开跨中心超速数据仓库的神秘面纱

    Mesa是跨多个数据中心、地缘重复的(geo-replicated)系统,并且即使在一个数据中心整体崩溃的情况下,仍可以低延迟提供一致、可重复的查询结果。”...本质上,Mesa是一个ACID兼容的数据库(换言之,如果一个人查询,他会得到正确数据),这样构造是从速度、尺度和可靠性方面进行考量的。...该论文中也提到:“Vertica是与Mesa功能接近的系统,即支持对交易数据进行动态更新、实时查询。”...“然而,”该文继续指出,“就我们所知,这些商业产品或者产品系统中没有一个是用来管理跨多个数据中心的重复数据集的。并且也尚不能断言这些系统是否真的允许云计算或者具有弹性。...图6: 在一个多数据中心Mesa的配置中的更新过程 该论文详述了Mesa工作的机制:即以表格形式的数据存储方式、数据查询方式和分布的架构——其中一个极为有趣的部分是关于硬件。

    885100

    Mesa——谷歌揭开跨中心超速数据仓库的神秘面纱

    Mesa是跨多个数据中心、地缘重复的(geo-replicated)系统,并且即使在一个数据中心整体崩溃的情况下,仍可以低延迟提供一致、可重复的查询结果。”...本质上,Mesa是一个ACID兼容的数据库(换言之,如果一个人查询,他会得到正确数据),这样构造是从速度、尺度和可靠性方面进行考量的。...该论文中也提到:“Vertica是与Mesa功能接近的系统,即支持对交易数据进行动态更新、实时查询。”...“然而,”该文继续指出,“就我们所知,这些商业产品或者产品系统中没有一个是用来管理跨多个数据中心的重复数据集的。并且也尚不能断言这些系统是否真的允许云计算或者具有弹性。...图6:在一个多数据中心Mesa的配置中的更新过程 该论文详述了Mesa工作的机制:即以表格形式的数据存储方式、数据查询方式和分布的架构——其中一个极为有趣的部分是关于硬件。

    55260

    当Google大数据遇上以太坊数据集,这会是一个区块链+大数据的成功案例吗?

    可喜的是,在区块链+大数据方向,继比特币数据集之后,Google再一次做了很好的尝试——在BigQuery上发布了以太坊数据集!...Google 在 BigQuery 平台上发布以太坊数据集,目的就在于深入探索以太坊数据背后“暗藏”的那些事儿。...每天从以太坊区块链分类帐中提取数据,这其中包括 Token 转移等智能合约交易结果。 取消按日期分区的数据规范,并将其存储在 BigQuery 平台上,进行简单且具有成本效益的探索。...也可在 Kaggle 上获取以太坊区块链数据集,使用 BigQuery Python 客户端库查询 Kernel 中的实时数据(注:Kernel 是 Kaggle 上的一个免费浏览器编码环境)。...区块链的大数据思维 基于以太坊数据集,我们分别对以下三个热门话题做了查询和可视化处理: 智能合约函数调用 链上交易时间序列和交易网络 智能合约函数分析 分析1:最受欢迎的智能合约事件日志?

    4.5K51

    1年将超过15PB数据迁移到谷歌BigQuery,PayPal的经验有哪些可借鉴之处?

    这确保了数据的安全性,保证数据位于无法从外部访问的范围内。我们部署了自动化操作以防止意外创建缺少加密密钥的数据集。...同样,在复制到 BigQuery 之前,必须修剪源系统中的字符串值,才能让使用相等运算符的查询返回与 Teradata 相同的结果。 数据加载:一次性加载到 BigQuery 是非常简单的。...干运行和湿运行 干运行,指的是没有数据的执行,可以确保变换的查询没有语法错误。如果干运行成功,我们会将数据加载到表中并要求用户进行湿运行。湿运行是一次性执行,用来测试结果集是否全部正确。...用户非常喜欢 BigQuery 日志的查询性能优势、更快的数据加载时间和完全可见性。...我们正在计划将来自财务、人力资源、营销和第三方系统(如 Salesforce)以及站点活动的多个数据集整合到 BigQuery 中,以实现更快的业务建模和决策制定流程。

    5.8K20

    从1到10 的高级 SQL 技巧,试试知道多少?

    MERGE是关系数据库中常用的语句。Google BigQuery MERGE 命令是数据操作语言 (DML) 语句之一。它通常用于在一条语句中自动执行三个主要功能。...这些函数是 UPDATE、INSERT 和 DELETE。 当两个或多个数据匹配时,可以使用 UPDATE 或 DELETE 子句。 当两个或多个数据不同且不匹配时,可以使用 INSERT 子句。...这意味着 Google BigQuery MERGE 命令可让您通过更新、插入和删除 Google BigQuery 表中的数据来合并 Google BigQuery 数据。...以下查询返回在where子句中指定的交易类型 (is_gift) 每天的总信用支出,并且还显示每天的总支出以及所有可用日期的总支出。...日期数组Date arrays 当您处理用户保留或想要检查某些数据集是否缺少值(即日期)时,它变得非常方便。

    66110

    大数据已死?谷歌十年老兵吐槽:收起 PPT 吧!数据大小不重要,能用起来才重要

    让我惊讶的是,大多数使用 BigQuery 的客户并没有真正的大数据。即使是拥有大数据的客户,也倾向于仅使用一小部分数据集。...你的潜在客户表可能还不到 1GB,在每个活动中跟踪每个潜在客户可能也只产生几 GB 数据。在合理的缩放范围内,很难想象如何增长到海量数据。...我用了很多不同的分析方法,以确保结果不被进行了大量查询的几个客户的行为所扭曲。我还把仅对元数据的查询剔除了,这是 BigQuery 中不需要读取任何数据的部分查询。...现代分析数据库可以通过列投影来只读字段的子集,通过分区修剪来只读较窄的日期范围。他们通常可以更进一步,通过聚类或自动微分区,利用数据中的局部性来消除段。...其他一些技巧,如对压缩数据进行计算、投影和谓词下推,都可以在查询时减少 IO 操作。更少的 IO 意味着更少的计算量,从而降低成本和延迟。 严峻的经济压力促使人们减少对大数据量的处理。

    1K30

    Apache Hudi 0.11.0版本重磅发布!

    我们在元数据表中引入了多模式索引,以显着提高文件索引中的查找性能和数据跳过的查询延迟。元数据表中添加了两个新索引 1....列统计索引包含所有/感兴趣的列的统计信息,以改进基于写入器和读取器中的键和列值范围的文件裁剪,例如在 Spark 的查询计划中。 默认情况下它们被禁用。...使用元数据表进行data skipping 随着在元数据表中增加了对列统计的支持,数据跳过现在依赖于元数据表的列统计索引 (CSI),而不是其自己的定制索引实现(与 0.10.0 中添加的空间曲线相比)...异步索引器 在 0.11.0 中,我们添加了一个新的异步服务,用于索引我们丰富的表服务集。它允许用户在元数据表中创建不同类型的索引(例如,文件、布隆过滤器和列统计信息),而不会阻塞摄取。...Google BigQuery集成 在 0.11.0 中,Hudi 表可以作为外部表从 BigQuery 中查询。

    4.3K40

    要避免的 7 个常见 Google Analytics 4 个配置错误

    这可能会给 GA4 中的数据分析带来挑战和局限性。 GA4 中的基数会对数据的准确性和可靠性产生负面影响。...由于它从您连接的那一刻起就将数据导出到 BigQuery,因此请务必在一开始就进行设置,以便获得尽可能多的历史数据。...与 GA4 自定义报告相比,BigQuery 具有很大的优势,因为从不对数据进行采样,而在自定义报告中,如果探索报告中的事件超过 10M 个,则会对数据进行采样。...由于受众群体日期不具有追溯力,因此在设置之初就定义目标受众群体以收集历史数据非常重要。 5....启用 Google 信号后,GA 会使用用户 ID 跨设备跟踪用户,然后在用户在不同设备上登录其 Google 服务帐户时对其进行匹配,并且用户身份可能会暴露。

    1.1K10

    谷歌发布 Hive-BigQuery 开源连接器,加强跨平台数据集成能力

    这个新增选项支持在 Hive 中使用类 SQI 查询语言 HiveQL 对 BigQuery 进行读写。...这样,数据工程师就可以在不移动数据的情况下访问和查询 BigQuery 数据集,而 BigQuery 的用户则可以利用 Hive 的工具、库和框架进行数据处理和分析。...Apache Hive 是一个构建在 Hadoop 之上的流行的分布式数据仓库选项,它允许用户在大型数据集上执行查询。...BigQuery 是谷歌云提供的无服务器数据仓库,支持对海量数据集进行可扩展的查询。为了确保数据的一致性和可靠性,这次发布的开源连接器使用 Hive 的元数据来表示 BigQuery 中存储的表。...该连接器支持使用 MapReduce 和 Tez 执行引擎进行查询,在 Hive 中创建和删除 BigQuery 表,以及将 BigQuery 和 BigLake 表与 Hive 表进行连接。

    1.2K20

    如何使用5个Python库管理大数据?

    BigQuery 谷歌BigQuery是一个非常受欢迎的企业仓库,由谷歌云平台(GCP)和Bigtable组合而成。这个云服务可以很好地处理各种大小的数据,并在几秒钟内执行复杂的查询。...BigQuery是一个RESTful网络服务,它使开发人员能够结合谷歌云平台对大量数据集进行交互分析。可以看看下方另一个例子。 ?...另一方面,Redshift是一个管理完善的数据仓库,可以有效地处理千万字节(PB)级的数据。该服务使用SQL和BI工具可以更快地进行查询。...然而,在Docker盛行的时代,使用PySpark进行实验更加方便。 阿里巴巴使用PySpark来个性化网页和投放目标广告——正如许多其他大型数据驱动组织一样。...Kafka Python Kafka是一个分布式发布-订阅消息传递系统,它允许用户在复制和分区主题中维护消息源。 这些主题基本上是从客户端接收数据并将其存储在分区中的日志。

    3.2K10

    详细对比后,我建议这样选择云数据仓库

    其中,从多种来源提取数据、把数据转换成可用的格式并存储在仓库中,是理解数据的关键。 此外,通过存储在仓库中的有价值的数据,你可以超越传统的分析工具,通过 SQL 查询数据获得深层次的业务洞察力。...亚马逊在 2020 年开始与必胜客合作。这家连锁餐厅将其在亚太地区门店产生的数据通过 Redshift 进行整合。这个数据仓库允许团队快速访问 PB 级的数据、运行查询,并可视化输出。...与 Redshift 不同,BigQuery 不需要前期配置,可以自动化各种后端操作,比如数据复制或计算资源的扩展,并能够自动对静态和传输中的数据进行加密。...该产品可以方便地将智能工具应用到各种数据集,包括来自 Dynamics 365、Office 365 和 SaaS 产品中的数据。 用户可以使用预置或无服务器的按需资源来分析数据。...例如,数据已经在谷歌云中的企业可以通过在谷歌云上使用 BigQuery 或者 Snowflake 来实现额外的性能提升。由于数据传输路径共享相同的基础设施,因此可以更好地进行优化。

    6.6K10
    领券