首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用Kafka,如何成功迁移SQL数据库中超过20亿条记录?

我们之所以选择它,是因为我们的客户更喜欢谷歌的云解决方案,他们的数据具有结构化和可分析的特点,而且不要求低延迟,所以 BigQuery 似乎是一个完美的选择。...将数据流到 BigQuery 通过分区来回收存储空间 我们将所有数据流到 Kafka(为了减少负载,我们使用了数据过滤),然后再将数据流到 BigQuery,这帮我们解决了查询性能问题,让我们可以在几秒钟内分析大量数据...将数据流到分区表中 通过整理数据来回收存储空间 在将数据流到 BigQuery 之后,我们就可以轻松地对整个数据集进行分析,并验证一些新的想法,比如减少数据库中表所占用的空间。...由于我们只对特定的分析查询使用 BigQuery,而来自用户其他应用程序的相关查询仍然由 MySQL 服务器处理,所以开销并不会很高。...另一点很重要的是,所有这些都是在没有停机的情况下完成的,因此客户不会受到影响。 总 结 总的来说,我们使用 Kafka 将数据流到 BigQuery。

3.2K20

20亿条记录的MySQL大表迁移实战

我们之所以选择它,是因为我们的客户更喜欢谷歌的云解决方案,他们的数据具有结构化和可分析的特点,而且不要求低延迟,所以 BigQuery 似乎是一个完美的选择。...将数据流到BigQuery 通过分区来回收存储空间 我们将所有数据流到 Kafka(为了减少负载,我们使用了数据过滤),然后再将数据流到 BigQuery,这帮我们解决了查询性能问题,让我们可以在几秒钟内分析大量数据...将数据流到分区表中 通过整理数据来回收存储空间 在将数据流到 BigQuery 之后,我们就可以轻松地对整个数据集进行分析,并验证一些新的想法,比如减少数据库中表所占用的空间。...由于我们只对特定的分析查询使用 BigQuery,而来自用户其他应用程序的相关查询仍然由 MySQL 服务器处理,所以开销并不会很高。...另一点很重要的是,所有这些都是在没有停机的情况下完成的,因此客户不会受到影响。 总结 总的来说,我们使用 Kafka 将数据流到 BigQuery。

4.7K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    弃用 Lambda,Twitter 启用 Kafka 和数据流新架构

    Kafka 和数据流上的新架构 Kafka 和数据流上的新架构 新架构基于 Twitter 数据中心服务和谷歌云平台。...在谷歌云上,我们使用流数据流作业,对重复数据进行处理,然后进行实时聚合并将数据汇入 BigTable。...在新的 Pubsub 代表事件被创建后,事件处理器会将事件发送到谷歌 Pubsub 主题。 在谷歌云上,我们使用一个建立在谷歌 Dataflow 上的 Twitter 内部框架进行实时聚合。...对于服务层,我们使用 Twitter 内部的 LDC 查询服务,其前端在 Twitter 数据中心,后端则是 Bigtable 和 BigQuery。...第二步,我们创建了一个验证工作流,在这个工作流中,我们将重复数据删除的和汇总的数据导出到 BigQuery,并将原始 TSAR 批处理管道产生的数据从 Twitter 数据中心加载到谷歌云上的 BigQuery

    1.7K20

    详细对比后,我建议这样选择云数据仓库

    你可以将历史数据作为单一的事实来源存储在统一的环境中,整个企业的员工可以依赖该存储库完成日常工作。 数据仓库也能统一和分析来自 Web、客户关系管理(CRM)、移动和其他应用程序的数据流。...最好的方式是把谷歌分析与数据仓库连接起来,这些数据已经在 Salesforce、Zendesk、Stripe 或其他平台上存储。...谷歌 BigQuery BigQuery 是谷歌提供的无服务器多云数据仓库。该服务能对 TB 级到 PB 级的数据进行快速分析。...用户很难决定使用哪种仓库服务。在分析使用哪个平台时,企业可从以下几个方面考虑,确保团队做好充足的准备。 用例 。 公司的独特情况和用例是评估数据仓库提供商的关键因素。...例如,数据已经在谷歌云中的企业可以通过在谷歌云上使用 BigQuery 或者 Snowflake 来实现额外的性能提升。由于数据传输路径共享相同的基础设施,因此可以更好地进行优化。

    5.7K10

    谷歌欲用云端来统一不同平台 推云数据分析工具

    北京时间6月26日凌晨消息,今日谷歌在旧金山举行I/O大会,会上技术平台高级副总裁Urs Hlzle介绍了谷歌云计算的发展情况。目前谷歌云平台支持SQL、NoSQL、BigQuery和谷歌计算引擎。...根据摩尔定律与云的关系:计算引擎价格下降30-53%;云存储价格下降68%;BigQuery价格下降85%;折扣自动调整。...据介绍谷歌希望用云端平台来统一不同的平台,随后现场演示如何debug一个正在多个服务器上运行的应用,谷歌的云端调试平台和轻松的进行了语法错误查找。...谷歌还为开发者提供了性能追踪器,以方便开发人员观察修改代码前后的性能表现。利用数据表明谷歌的云平台诸多性能表现,让用户轻松进行管理。...Cloud Dataflow可以通过动态图显示数据流,谷歌演示了世界杯巴西对克罗地亚比赛时的Twitter社区讨论追踪,能看到在裁判“误判点球”时,网友的反映变化。

    91750

    谷歌云平台竞争力或大幅增强 全面下调价格

    长期以来,在面向个人或企业的云平台服务商中,微软和亚马逊一直拥有较大的领先优势,而鉴于云平台对于数据处理的重要性,谷歌也在持续努力打造自己的云端平台来增强竞争力。...因此在2014谷歌开发者大会上,谷歌技术基础设施部门高级副总裁上台重点讲述了谷歌云平台的现状和竞争力。 ?...从图中我们可以看到的是,目前谷歌云平台支持SQL、NoSQL、BigQuery和谷歌的Compute引擎,分别对应计算、存储和App服务。...目前谷歌云平台的处理过程主要分为四个步骤:首先分析数据调查的难度,此时需要调用更多不同的技术来处理数据,倘若批处理和流单元是无效的,那么最后要进行单独的部署和操作。 ?...而根据之前的消息我们也能得知,谷歌云平台已经登陆亚洲并宣布下调云平台价格,Compute引擎降价30-53%;云端存储降价68%;Web服务端降价85%。由此可见,未来谷歌云平台的竞争力将会得以增强。

    95530

    41岁遗传学博士研究一年,给谷歌祭出秘密杀器!

    虽然,这些「自动代理」的身份不明,但根据他的经验,他认为,这很可能是加密货币交易所为了哄抬币价做的「小动作」。 ? 谷歌云服务高级开发人员倡导者Allen Day 这个发现,让他兴奋不已。...在这样的背景下,作为谷歌云服务高级开发人员倡导者(developer advocate),Allen本职工作就是准确分析和预测市场需求。...然而,在BigQuery中,Tomasz小哥搜索了一个名为「析构」(selfdestruct,该函数旨在限制智能合约的使用寿命)的智能合约函数时。只用了23秒,就搜索完了120万个智能合约。...其实,BigQuery谷歌的大数据分析平台。在区块链搜索方面,它最大的特点就是可以快速检索数据,并且对数据进行操作。...Thomas Silkjaer 使用谷歌大数据分析平台BigQuery 绘制的与瑞波币地址相关的公开信息;图中陨石坑一样的位置代表了一些大的加密货币交易所 ?

    1.4K30

    1年将超过15PB数据迁移到谷歌BigQuery,PayPal的经验有哪些可借鉴之处?

    图 1:PayPal 分析环境中的数据流高层视图 PayPal 在本地管理两个基于供应商的数据仓库集群,总存储量超过 20PB,为 3,000 多个用户提供服务。...在两大仓库中,PayPal 决定首先将分析仓库迁移到 BigQuery,获得使用该服务作为 Teradata 替代品的经验,并在此过程中为 PayPal 的数据用户构建一个围绕 Google Cloud...Platform 服务的平台。...我们决定在 Google Cloud Platform 提供的服务范围内,在 BigQuery 中使用 PayPal 提供的私钥来保护我们的数据。...同样,在复制到 BigQuery 之前,必须修剪源系统中的字符串值,才能让使用相等运算符的查询返回与 Teradata 相同的结果。 数据加载:一次性加载到 BigQuery 是非常简单的。

    4.7K20

    运用谷歌 BigQuery 与 TensorFlow 做公共大数据预测

    Lak Lakshmanan 是谷歌云服务团队的大数据与机器学习专业服务成员,他在谷歌云平台写了下文,以帮助用户使用谷歌云预测商业需求。 所有商业业务都会设法预测客户需求。...如果你的业务不涉及出租车,或者依赖天气之外的其他因素,那你就需要把你自己的历史数据加载到 BigQuery 中。...类似地,你可以运行 BigQuery,按一年中每一天的序号来预测这一天的出租车搭乘总数。 ? 通过合并天气和车次数据库,我们就得到了供机器学习使用的完整数据集: ?...周四的出租车需求通常较少(纽约市的出租车用车高峰在周末),然而机器学习模型告诉我们由于天气原因这周四会有大量的用车需求。 谷歌云平台使得这类需求预测问题变得特别容易解决。...谷歌云平台中的公共数据集包括来自美国国家海洋与气象局的天气信息。要想更多地了解谷歌云平台和它的大数据、机器学习能力,你也可以注册谷歌云的培训课程。 来源:cloud.Google.com

    2.2K60

    7大云计算数据仓库

    云计算数据仓库是一项收集、组织和经常存储供组织用于不同活动(包括数据分析和监视)数据的服务。 在企业使用云计算数据仓库时,物理硬件方面全部由云计算供应商负责。...关键价值/差异: •作为完全托管的云计算服务,数据仓库的设置和资源供应均由谷歌公司使用无服务器技术来处理。...•BigQuery中的逻辑数据仓库功能使用户可以与其他数据源(包括数据库甚至电子表格)连接以分析数据。...•与BigQuery ML的集成是一个关键的区别因素,它将数据仓库和机器学习(ML)的世界融合在一起。使用BigQuery ML,可以在数据仓库中的数据上训练机器学习工作负载。...•可以在IBM云平台或AWS云平台中完成云部署,并且还有本地版本的Db2 Warehouse,这对于具有混合云部署需求的组织很有用。

    5.4K30

    分析世界新闻:通过谷歌查询系统探索GDELT项目

    然而,该数据的量级和特征给分享带来了很大困难。我们正是要通过Google BigQuery(谷歌查询系统)平台来帮助用户获取和查询这一不断增长的数据库。...Google BigQuery谷歌查询系统又是什么? 谷歌查询系统是一个基于云的分析数据库,其创建是为了服务于像GDELT这样的海量数据源。...一些事件种类例如抗议或和平呼吁这样的数据流,具有高度的结构化模式,可专供RDBMS系统使用,而且已在几十年的使用过程中不断被优化。...谷歌查询系统的用户利用Java语言设定功能使任意复杂的应用作为查询的一部分,例如嵌套循环,以及在一个文件中将每个主题与其最近位置相连等,以使整个分析途径在谷歌查询系统中能独家运行。...因为它们开始接纳大数据——云服务,这就是传统上和社会科学领域一样的“小数据”领域的研究未来,例如谷歌查询系统,将能直观地处理缩放和数据管理,使研究人员专注于解答问题,进而激发新观念、启发新思考。

    3.7K80

    谷歌发布 Hive-BigQuery 开源连接器,加强跨平台数据集成能力

    这个新增选项支持在 Hive 中使用类 SQI 查询语言 HiveQL 对 BigQuery 进行读写。...所有的计算操作(如聚合和连接)仍然由 Hive 的执行引擎处理,连接器则管理所有与 BigQuery 数据层的交互,而不管底层数据是存储在 BigQuery 本地存储中,还是通过 BigLake 连接存储在云存储桶中...BigQuery 是谷歌云提供的无服务器数据仓库,支持对海量数据集进行可扩展的查询。为了确保数据的一致性和可靠性,这次发布的开源连接器使用 Hive 的元数据来表示 BigQuery 中存储的表。...该连接器支持使用 MapReduce 和 Tez 执行引擎进行查询,在 Hive 中创建和删除 BigQuery 表,以及将 BigQuery 和 BigLake 表与 Hive 表进行连接。...图片来源:谷歌数据分析博客 根据谷歌云的说法,Hive-BigQuery 连接器可以在以下场景中为企业提供帮助:确保迁移过程中操作的连续性,将 BigQuery 用于需要数据仓库子集的需求,或者保有一个完整的开源软件技术栈

    34620

    凭借在开源圈的好人缘,能让谷歌云找回自己失去的10年吗?

    通过对 500 名云决策者开展调查,Ensono LP 发现 41% 的受访者正在或计划使用 GCP 服务(但主要作为第二或第三云选项),仅次于微软的 58%。...作为 BigQuery 家族的新版本,Omni 能够跨多个云平台实现存储数据处理,再次证明了谷歌承诺的平台中立态度。...虽然说由于自身业务规模较小,与其他云平台的顺畅对接有其必然性,但谷歌确实通过 BigQuery Omni 等项目践行了这一承诺,并计划用两年前收购的 Looker 商务智能平台维护各项跨云功能。...谷歌凭借 2019 年推出的 Anthos 对自己的云服务组合进行了拆分。Anthos 是谷歌云平台的全兼容版本,能够在客户场所及托管服务 / 电信环境下运行。...他认为,“基础设施的市场份额掌握在谁手中将不再重要,应用程序的市场份额才是决定胜负的关键。” 凭借在数据分析、人工智能以及其他多个垂直市场中的顶尖产品,谷歌有望在这些增长市场中再拿下几城。

    53620

    「数据仓库技术」怎么选择现代数据仓库

    大多数现代数据仓库解决方案都设计为使用原始数据。它允许动态地重新转换数据,而不需要重新摄取存储在仓库中的数据。 在这篇文章中,我们将深入探讨在选择数据仓库时需要考虑的因素。...让我们看看一些与数据集大小相关的数学: 将tb级的数据从Postgres加载到BigQuery Postgres、MySQL、MSSQL和许多其他RDBMS的最佳点是在分析中涉及到高达1TB的数据。...本地和云 要评估的另一个重要方面是,是否有专门用于数据库维护、支持和修复的资源(如果有的话)。这一方面在比较中起着重要的作用。...谷歌BigQuery提供可伸缩、灵活的定价选项,并对数据存储、流插入和查询数据收费,但加载和导出数据是免费的。BigQuery的定价策略非常独特,因为它基于每GB存储速率和查询字节扫描速率。...当数据量在1TB到100TB之间时,使用现代数据仓库,如Redshift、BigQuery或Snowflake。

    5K31

    如何使用5个Python库管理大数据?

    这就是为什么我们想要提供一些Python库的快速介绍来帮助你。 BigQuery 谷歌BigQuery是一个非常受欢迎的企业仓库,由谷歌云平台(GCP)和Bigtable组合而成。...这个云服务可以很好地处理各种大小的数据,并在几秒钟内执行复杂的查询。 BigQuery是一个RESTful网络服务,它使开发人员能够结合谷歌云平台对大量数据集进行交互分析。可以看看下方另一个例子。...AmazonS3本质上是一项存储服务,用于从互联网上的任何地方存储和检索大量数据。使用这项服务,你只需为实际使用的存储空间付费。...Kafka Python Kafka是一个分布式发布-订阅消息传递系统,它允许用户在复制和分区主题中维护消息源。 这些主题基本上是从客户端接收数据并将其存储在分区中的日志。...使用KafkaPython编程同时需要引用使用者(KafkaConsumer)和引用生产者(KafkaProducer)。 在Kafka Python中,这两个方面并存。

    2.8K10

    「集成架构」2020年最好的15个ETL工具(第三部)

    最好的开源ETL工具列表与详细比较: ETL代表提取、转换和加载。它是从任何数据源中提取数据并将其转换为适当格式以供存储和将来参考的过程。 最后,该数据被加载到数据库中。...自动模式检测和映射:Hevo强大的算法可以检测传入数据的模式,并在数据仓库中复制相同的模式,无需任何人工干预。 实时架构:Hevo建立在实时流架构上,确保数据实时加载到仓库。...它具有将谷歌分析数据与广告数据映射的功能。 数据可以在Improvado仪表板中可视化,或者使用您选择的BI工具。...我们的解决方案是专门为亚马逊Redshift、Snowflake和谷歌BigQuery构建的,可以从大量来源提取数据,将其加载到公司选择的云数据仓库,并将数据从其孤立状态转换为有用的、连接在一起的、可用于分析的大规模数据...该公司还拥有AWS市场上评级最高的ETL产品,90%的客户表示他们会推荐Matillion。 主要特点: 在您首选的云平台上启动产品,并在几分钟内开始开发ETL作业。

    1.9K10

    给有抱负的数据科学家的六条建议

    亲身尝试云计算 现在许多公司都在找有云计算经验的数据科学家,因为云平台提供的工具可以扩大数据流和预测模型的规模。未来你也可能在日常工作中用上一个云平台,比如亚马逊的AWS和谷歌云平台(GCP)。...比如我在一篇讲模型类服务的文章中,用了我熟悉的SKlearn,并且研究了如何把一个模型包装成Lambda函数。...或者可以包含将不同的组件整合到一个平台上,比如用GCP数据流(DataFlow)来获取BigQuery的数据然后应用到预测模型上,再把预测结果储存到云数据存储(Cloud Datastore)上。...关于这点,我的建议是尝试使用一些工具(比如Flask或者Gunicorn)去配置web端点(endpoint),然后用Dash在Python中创建交互式的web应用。...当然,在Docker中尝试配置这当中的一些服务也会对你颇有帮助。 做过的酷炫的可视化 虽然伟大的工作自然会脱颖而出,但在你解释一个分析或模型如何重要之前,仍有必要获得众人的关注。

    52120

    将Hadoop作为基于云的托管服务的优劣势分析

    客户对专长、定制配置和能力等方面的要求越高,服务的成本就越高昂。   不过,开支通常少于在现场运行部署的大型Hadoop系统,而且它确实降低了复杂性。...而现在,活动进程出现在HDFS的内存中的缓存,Hadoop使用后写(write-behind)将数据存储在磁盘上。...Qubole与谷歌云(Google Cloud)达成了合作伙伴,使用谷歌的计算引擎(GCE)。...说到谷歌,面向Hadoop的谷歌云存储(GCS)连接件让用户可以直接对存储在GCS中的数据运行MapReduce任务,那样就没必要在内部写入数据、在本地Hadoop中运行。...另外的数据连接件让GCS用户能够对存储在谷歌Datastore和谷歌BigQuery中的数据运行 MapReduce。   Hortonworks数据平台提供了企业级托管HaaS。

    2.1K10
    领券