首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在没有商业计划的情况下冲动地使用机器学习有哪些危险?

在没有商业计划的情况下冲动地使用机器学习可能会带来以下危险:

  1. 高昂的成本:机器学习需要大量计算资源,如果盲目投入,可能会导致高昂的成本难以承受。
  2. 数据质量问题:机器学习依赖高质量数据,如果在没有商业计划的情况下盲目使用,可能会导致数据质量问题,进而影响模型性能。
  3. 缺乏可扩展性:如果盲目使用机器学习,可能会导致系统难以扩展,难以应对未来的需求变化。
  4. 技术不成熟:机器学习是一个快速发展的领域,如果盲目使用,可能会选择不成熟的技术,进而导致系统难以维护和质量低下。
  5. 缺乏业务理解:如果没有商业计划,可能会导致对业务理解不够深入,进而导致机器学习无法真正解决业务问题。

因此,在没有商业计划的情况下盲目使用机器学习可能会带来巨大的风险。在投入机器学习之前,需要充分了解业务场景和技术发展趋势,制定明确的商业计划和实施策略,以确保机器学习真正发挥价值。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 看机器学习和商业智能如何改善医疗保健的

    商业智能概念,如描述性,诊断性,预测性和规范性分析,听起来像医学术语,实际上可以用于挽救生命的医疗保健方式。 在以患者和以人为中心的医疗保健领域,我们对机器学习和商业智能如何改善患者护理以及节省宝贵时间和资源的理解才刚刚开始被发现。机器可以了解病人并帮助病人的想法正在变得越来越广泛地被医疗领域所接受。对许多人来说,这似乎是外国的,甚至危险的概念。 同样,在一个致力于帮助人们变得更好并保持良好状态的行业中谈论“商业智能”似乎也很奇怪,也就是说,直到我们意识到商业智能概念像描述性,诊断性,预测性和规范性分析这些

    08

    【哈佛商业评论】所有AI公司都面临的两难:性能优先还是应用优先?

    【新智元导读】哈佛商业周刊最新的一篇评论文章指出,和人类参与不同工作有不同胜任标准一样,机器何时可以从内部训练转为在真实工作环境中学习的标准也不一样。对于AI公司来说,首先需要搞清楚自己和客户对于错误的容忍度是什么,然后要问自己:在真实环境中获取客户数据有多么重要?最终,需要找到一个产品训练时长和投入真实环境后潜在风险的平衡点。 不同工作,对错误的容忍度不同 麦当劳的收银员不需要太多培训就能上岗。即使是上班第一天,大多数收银员也能胜任工作。工作时间越长,他们就越有经验。虽然新人可能有些慢,比起老员工,错误

    08

    人工智能“军备竞赛”的真正危险是什么?专家警告:未来挺可怕!

    数据猿报道,俄罗斯总统弗拉基米尔·普京早在2017年时就宣称,领导人工智能发展的国家将“成为世界的统治者”。这种观点显然在全球全面铺开,因为截至目前,已经有十几个国家宣布了本国的人工智能计划。2017年,中国发布《新一代人工智能发展规划》,制订了“到2030年人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心,智能经济、智能社会取得明显成效,为跻身创新型国家前列和经济强国奠定重要基础”的目标。2019年早些时候,美国白宫发布了《美国人工智能计划》,美国国防部推出了人工智能战略。

    02

    向机器人求个职 ,抢走人类的工作还发放岗位了?

    奥康纳:机器人并不只抢走人类的工作,它们也开始招聘人类员工了,因为它们可以快速筛选应聘者,但这很危险。 机器人并不只抢走人类的工作,它们也开始向人类发放工作岗位了。参加招聘行业的任何一场活动,你都会发现空气中弥漫着像“机器学习”、“大数据”和“预测分析”这样的字眼。 在招聘中使用这些工具的理由很简单。机器人招聘者可以快速筛选数以千计的应聘者,效率远高于人类。它们还能做到更加公平。因为它们不会像人类那样带着有意或无意的偏见,它们会招聘到一批更多元化和择优录用的员工。 这是个很诱人的想法,但也是危险的。算法的中

    04

    AI Talk | 思必驰首席科学家俞凯:深度绑定底层研究和产业问题

    机器之心原创 作者:高琳 这个世界上的研究,总会有一些人去坐冷板凳,而坐冷板凳的人,他今天去坐明天不一定去坐。就像深度学习现在这么热,之前也有过很冷的阶段。 创业的这个过程中能够义无反顾,这是思必驰团队非常有特色的一个点。当然不是傻的义无反顾,如果说大家都没有学习能力,只是撞南墙是肯定不行的。但是如果没有这种义无反顾的决心,遇到困难就放弃,我不认为是一个合格的创业者。 对于创业者来讲,如果说他在很多事情上,不能够拿自己底层的东西去拼的话,这个创业,恐怕一遇到困难就会垮掉。 从研究到创业,这是俞凯在机器之心

    08

    技能 | 开发者成功使用机器学习的10大诀窍

    基于云的机器学习工具带来了使用机器学习创造和提供新的功能的可能性。然而,当我们使用不当时,这些工具会输出不好的结果。想要在应用程序中成功地融入机器学习的开发者,需要注意十大关键要点。 在提供发现埋藏数据深层的模式的能力上,机器学习有着潜在的能力使得应用程序更加的强大并且更能响应用户的需求。精心调校好的算法能够从巨大的并且互不相同的数据源中提取价值,同时没有人类思考和分析的限制。对于开发者而言,机器学习为应用业务的关键分析提供了希望,从而实现从改善客户体验到提供产品推荐上升至超个性化内容服务的任何应用程序

    010

    【机器学习】开发者成功使用机器学习的十大诀窍

    在提供发现埋藏数据深层的模式的能力上,机器学习有着潜在的能力使得应用程序更加的强大并且更能响应用户的需求。精心调校好的算法能够从巨大的并且互不相同的数据源中提取价值,同时没有人类思考和分析的限制。对于开发者而言,机器学习为应用业务的关键分析提供了希望,从而实现从改善客户体验到提供产品推荐上升至超个性化内容服务的任何应用程序。 像Amazon和Micorosoft这样的云供应商提供云功能的机器学习解决方案,承诺为开发者提供一个简单的方法,使得机器学习的能力能够融入到他们的应用程序当中,这也算是最近的头条新闻了

    08

    论文 | 谷歌OpenAI联合发布AI安全五大准则,预防AI暴走(下)

    今天我们带来了谷歌安全五大定律的下篇,经过详细的论证,谷歌给出了一个可执行的AI的安全问题设计框架。让对于AI的限制的问题不再仅限于假设和推测,对今后深度学习系统的设计有不错的参考意义。 5. 可拓展的监管 想象一个有智能代理执行一些复杂的任务,比如清扫机器打扫办公室。我们会希望智能代理能最大限度地完成这个复杂的任务,就好像“如果使用者花费几个小时仔细检查结果,他们对代理的表现是否会满意呢?”我们没有足够的时间对每一个实际训练提供监管;为训练智能代理,我们需要依靠相似情况,例如“使用者看到办公室时是否开心?

    04

    德勤 | 思维与机器:人工智能时代的预测之术

    【新智元导读】预测对经济和社会极其重要。金融、医疗、政治以及反恐、自然灾害预防等等领域,预测都有着不可替代的作用。然而,此前的研究表明,即便是最顶级的专家,在预测能力上也不一定比随机概率更好。德勤7月26日发表最新报告,认为大数据和AI会从根本上改变人类的预测规则,带来更好的预测能力,从而为企业带来丰厚的利润。文章也强调,人工智能时代下的预测呼唤新的人机合作方式,也更需要“群体智能”。 智能机器时代,人类的判断力 时下,商业和知识体系中的两大主要趋势为在复杂且快速变化的世界中进行预测提供了互补性的洞见。一

    016
    领券