首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何使用ParamSpider在Web文档中搜索敏感参数

ParamSpider ParamSpider是一款功能强大的Web参数挖掘工具,广大研究人员可以利用ParamSpider来从Web文档的最深处挖掘出目标参数。...核心功能 针对给定的域名,从Web文档中搜索相关参数; 针对给定的子域名,从Web文档中搜索相关参数; 支持通过指定的扩展名扫描引入的外部URL地址; 以用户友好且清晰的方式存储扫描的输出结果; 在无需与目标主机进行交互的情况下...,从Web文档中挖掘参数; 工具安装&下载 注意:ParamSpider的正常使用需要在主机中安装配置Python 3.7+环境。...注意:在使用该工具之前,请确保本地主机配置好了Go环境。...paramspider.py --domain bugcrowd.com --exclude woff,css,js,png,svg,php,jpg --output bugcrowd.txt 注意事项:因为该工具将从Web文档数据中爬取参数

3.7K40

ULID 在 Java 中的应用: 使用 `getMonotonicUlid` 生成唯一标识符

ULID 在 Java 中的应用: 使用 getMonotonicUlid 生成唯一标识符 摘要 猫头虎博主在此! 近期,我收到了许多关于如何在 Java 中生成 ULID 的问题。...ULID, Java, getMonotonicUlid, Universally Unique Lexicographically Sortable Identifier 引言 在分布式系统中,为每个实体生成一个唯一标识符是一个常见的需求...传统上,我们可能会使用 UUID,但 ULID 作为一个新的选择,因为它不仅是唯一的,还可以按照生成的时间进行排序。 正文 1. ULID 是什么?...ULID (Universally Unique Lexicographically Sortable Identifier) 是一种用于生成全球唯一标识符的方法。...实际应用场景 在分布式系统、事件日志、数据库主键等多种场景中,ULID 都可以作为一个高效、可靠的唯一标识符生成策略。 总结 ULID 是一个强大的工具,尤其是在需要按时间排序的场景中。

78610
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    智能文档管理:自然语言处理在搜索和分类中的作用

    下面是一些能帮你通过自然语言处理算法提升文档管理软件的搜索和分类效率的方法:1.文档索引化:把文档内容转化成一种可以轻松索引的形式,这样搜索和分类就会变得超级简单。...2.关键词提取:用关键词提取算法自动找出文档里的关键词和短语,然后拿来用于搜索和分类。这有助于更好地理解文档的内容。...这有助于给用户推荐与他们当前浏览或搜索的文档相关的其他文档。6.命名实体识别:识别文档中的命名实体,比如人名、地名、组织名,可以帮助更准确地分类和搜索文档。...7.自动生成摘要:使用自动生成摘要技术,为文档生成简短的摘要,这样用户就不必费劲地阅读整个文档就能快速了解内容。8.用户反馈集成:收集用户反馈并用来改进搜索和分类算法。...11.多语言支持:如果你的文档管理软件支持多种语言,别忘了确保NLP算法能够处理多语言文本。12.隐私和安全考虑:在采用NLP算法时,务必关注隐私和安全问题,尤其是对于那些涉及敏感信息的文档管理软件。

    22820

    分布式系统中唯一 ID 的生成

    几乎我见过的所有大型系统中,都需要一个唯一 ID 的生成逻辑。...其它的生成服务也有很多,很多系统中设计的 ticket server 本质上也就是扮演这样一个角色,特点是这个 ID 生成服务系统必须独立于现有母系统(客户系统)。...本地生成器 这个也很常见,局限性也非常明显。通常必须满足这样的要求:在不同的 host(分布式节点)之间没有关系保证(比如递增性)。...比如我见过这样的逻辑,用 host 的唯一编号来作前缀(保证环境中节点编号的唯一性即可),毫秒数来生成 ID 的主体部分。看似简单,一样可以解决唯一 ID 的问题。...在分布式系统中,它比前面说的方案有更多优势,比如长度一致,比如没有一个毫秒内最多只能生成一个的要求。但是,尽管可以认为它是唯一的,基于随机数产生的 UUID 冲突却是理论上可能存在的。

    67010

    分布式唯一ID生成:深入理解Snowflake算法在Go中的实现

    在分布式系统中,为了确保每个节点生成的 ID 在整个系统中是唯一的,我们需要一种高效且可靠的 ID 生成机制。分布式 ID 的特点全局唯一性:不能出现有重复的 ID 标识,这是基本要求。...SnowFlake 算法在同一毫秒内最多可以生成多少个全局唯一 ID 呢?...同一毫秒的 ID 数量 = 1024 * 4096 = 4194304,也就是说在同一毫秒内最多可以生成 4194304 个全局唯一 ID。...sony/sonyflake:优化了一些性能细节,更适合对性能有更高要求的场景。结论Snowflake 算法通过简单却有效的方式解决了分布式系统中唯一 ID 生成的问题。...在具体应用中,我们可以根据需求选择适合的库,以确保系统的高效性和稳定性。

    11810

    【干货】IRGAN :生成对抗网络在搜狗图片搜索排序中的应用

    信息检索的目的就是针对用户输入的Query,返回给对方一个合适候选文档列表。...而在LTR-GAN任务中,则通过对学习选择那些最优的未观测样本来作为生成样本,也就是说,这个生成的样本本身已经存在,只是之前没有标签而已。这是由排序任务特定场景造成的。 ?...判别器试图打压漂浮起来的泡泡,而生成器则给他们各自一个浮力,虽然判别器打压未观测的正样本在水平面以下,但是生成器会尽量保证这些未观测正样本在未观测负样本的上面。...这里说一点,与LTR任务中不同的是,不再对文档进行3分制,或5分制这样区别,而是用了2分制,意思就是打分大于0 的,统一为正样本,小于或等于0 ,以及没标签的的,统一为负样本。...在我们的检索系统中每个查询返回结果数目都很大,如果全部拿来做训练,会非常耗时,因此采用抽样的策略,首先考虑到top结果的相关性更重要,且比较难以区分,因此这部分无标签是从每个查询返回结果的top中随机抽样

    1.9K70

    在PowerBI的切片器中搜索

    在制作PowerBI报告时,一般来说,我们都会创建一些切片器。为了节省空间,一般情况下尤其是类目比较多的时候,大多采用下拉式的: ?...不过,在选项比较多的时候,当你需要查找某个或者某几个城市的销售额时,你会发现这是一件很难办的事情,比如我们要看一下青岛的销售额时: ?...你可能会来回翻好几遍才会找到,这时候再让你去找济南的销售情况,你恐怕会抓狂。 那,有没有能够在切片器中进行搜索的选项呢? 答案是:有的。 如图: ?...只要在Power BI Desktop的报告中鼠标左键选中切片器,按一下Ctrl+F即可。此时,切片器中会出现搜索框,在搜索框中输入内容点击选择即可: ?...如果想同时看青岛和济南的销售额,可以在选中青岛后,重新搜索济南,然后按住Ctrl点击鼠标左键即可: ? 发布到云端,同样也可以进行搜索: ?

    12.4K20

    DNN在搜索场景中的应用

    DNN在搜索场景中的应用潜力,也许会比你想象的更大。 --《阿里技术》 1.背 景 搜索排序的特征在于大量的使用了LR,GBDT,SVM等模型及其变种。...在FNN的基础上,又加上了人工的一些特征,让模型可以主动抓住经验中更有用的特征。 ? ? 3. Deep Learning模型 在搜索中,使用了DNN进行了尝试了转化率预估模型。...转化率预估是搜索应用场景的一个重要问题,转化率预估对应的输入特征包含各个不同域的特征,如用户域,宝贝域,query域等,各种特征的维度都能高达千万,甚至上亿级别,如何在模型中处理超高维度的特征,成为了一个亟待解决的问题...在普适的CTR场景中,用户、商品、查询等若干个域的特征维度合计高达几十亿,假设在输入层后直接连接100个输出神经元的全连接层,那么这个模型的参数规模将达到千亿规模。...在以上的流程中,无法处理有重叠词语的两个查询短语的关系,比如“红色连衣裙”,“红色鞋子”,这两个查询短语都有“红色”这个词语,但是在往常的处理中,这两者并没有任何关系,是独立的两个查询ID,如此一来可能会丢掉一些用户对某些词语偏好的

    3.7K40

    提高文档检索效率:KMP算法在文档管理中的应用

    KMP算法可以用于文档管理软件中的字符串匹配功能。在监控软件中,需要对用户的电脑活动进行监控,包括监控用户输入的文本内容。...监控软件可以将敏感信息存储在一个字符串数组中,然后使用KMP算法对用户输入的文本进行匹配。如果匹配成功,则说明用户输入了敏感信息,监控软件可以立即进行相应的处理,如记录日志、弹出警告框等。...KMP算法可以在文档管理软件中用于检测用户在电脑上输入的敏感信息,例如密码、银行账号等。其优势包括:高效性:KMP算法的时间复杂度为O(n),相比暴力匹配算法的O(n*m)更加高效。...隐私保护:KMP算法可以在本地进行匹配,不需要将用户的敏感信息上传到云端,保护用户隐私。 文档管理软件可以利用KMP算法实现以下用途:监控员工的账号密码输入,防止泄露公司敏感信息。...总之,KMP算法在文档管理软件中具有重要的应用价值,可以帮助企业保护公司机密和员工隐私。

    13920

    在Solr中搜索人名的小建议

    搜索人名是我们在许多应用程序中经常用到的功能。比如对书店来说,按作者名检索的功能就相当重要。虽然很难起一个完美的名字,但是我们可以使用Solr的一些功能,使绝大多数英文名搜索达到绝佳的效果。...如果我们能够解决两个主要问题,人名搜索的问题就解决一大半了。 作者姓名重排,无论是在文档还是查询中,有些部分都被省略了:(Doug Turnbull, D. Turnbull, D. G....] [dougl] [dougla] [douglas] 有关此过滤器(以及Solr中的许多其他过滤器)需要注意的是,每个生成的标记最终在索引文档中占据相同的位置。...Turnbull出现的每一处(以及有David G. Turnbull的地方)! 结合 好的,进入下一环节。现在用户在搜索框中输入“Turnbull,D.”。然后呢?...首先,如上所述,所有生成的标记在标记流中共享位置。所以[D.]和[Douglas]在索引文档中处于相同的位置。这意味着,当位置重要时(如在词组查询中)“D.

    2.7K120

    css 对元素在文档中的排列的影响

    文档中元素的排列主要是根据层叠关系进行排列的;   形成层叠上下文的方法有:     1)、根元素     2)、position 的属性值为: absolute | relative,且 z-index...;   元素的 z-index 值只在同一个层叠上下文中有意义。...如果父级层叠上下文的层叠等级低于另一个层叠上下文的,那么它 z-index 设的再高也没用; 层叠顺序   层叠顺序(层叠次序、堆叠顺序)描述的是元素在同一个层叠上下文中的顺序规则,从底部开始,共有七种层叠顺序...块级元素;     4)、浮动元素;     5)、行内元素;     6)、z-index : 0 ;     7)、正 z-index 值;   除了层叠顺序规则之外,还有一个规则,那就是:后来居上; 文档流...  文档流分三种: 常规流、浮动、绝对定位; BFC   BFC(block Formatting Context)块级格式化上下文,是用于布局块级盒子的一块渲染区域,相对的还有 IFC (inline

    1.8K20

    CouchDB:分布式文档存储数据库简介

    CouchDB的核心概念 在深入了解CouchDB之前,让我们先了解一些核心概念。 文档(Document) CouchDB使用文档作为基本存储单元,每个文档都是一个JSON对象。...文档可以包含不同结构的数据,没有预定义的模式。每个文档都有一个唯一的标识符(ID)。 视图(View) CouchDB的视图是用于查询和分析数据的机制。...视图使用MapReduce算法来生成索引,允许你以各种方式查询和排序文档。 设计文档(Design Document) 设计文档是一种特殊类型的文档,其中包含了视图的定义和其他数据库设置。...2.容错性: CouchDB使用MVCC和分布式特性,可容忍故障,即使在节点故障的情况下也能保持数据完整性。3.全文搜索: CouchDB具有内置的全文搜索引擎,可用于执行高效的文本搜索操作。...以下是一些流行的CouchDB客户端库: •JavaScript: Node.js环境中,你可以使用nano或couchdb-nano库。在浏览器中,pouchdb是一个强大的选择。

    1K20

    必会算法:在旋转有序的数组中搜索

    大家好,我是戴先生 今天给大家介绍一下如何利用玄学二分法找出目标值元素 想直奔主题的可直接看思路2 ##题目 整数数组 nums 按升序排列,数组中的值互不相同 在传递给函数之前,nums...: 将数组第一个元素挪到最后的操作,称之为一次旋转 现将nums进行了若干次旋转 给你 旋转后 的数组 nums 和一个整数 target 如果 nums 中存在这个目标值 target 则返回它的下标...这样思路就非常清晰了 在二分查找的时候可以很容易判断出 当前的中位数是在第一段还是第二段中 最终问题会简化为在一个增序数据中的普通二分查找 我们用数组[1,2,3,4,5,6,7,8,9]举例说明 target...所以可以判断出 此时mid=4是处在第一段中的 而且目标值在mid=4的前边 此时,查找就简化为了在增序数据中的查找了 以此类推还有其他四种情况: mid值在第一段,且在目标值的前边 mid值在第二段...,且在目标值的前边 mid值在第二段,且在目标值的后边 mid值就是目标值 ###代码实现2 套用二分查找的通用公式 思路2的代码实现如下 public static int getIndex(int

    2.8K20

    NLP技术在搜索推荐场景中的应用

    NLP技术在搜索推荐中的应用非常广泛,例如在搜索广告的CTR预估模型中,NLP技术可以从语义角度提取一些对CTR预测有效的信息;在搜索场景中,也经常需要使用NLP技术确定展现的物料与搜索query的相关性...今天这篇文章梳理了NLP技术在搜索推荐场景中3个方面的应用,分别是NLP提升CTR预估效果、NLP解决搜索场景相关性问题、NLP信息优化基于推荐系统效果。...2 NLP解决搜索场景相关性问题 NLP在搜索场景或电商场景的一大应用,就是解决相关性问题。...4 总结 本文主要介绍了NLP技术在搜索推荐场景中的应用。...在搜索推荐中,文本信息是很常见的一种信息来源,因此如何利用文本信息提升CTR预估、推荐等模型效果,以及如何利用NLP技术解决相关性问题,都是搜推广场景中很有价值的研究点。 END

    1.9K20

    分布式系统中的必备良药 —— 全局唯一单据号生成

    二、和唯一ID的不同是什么   有的人可能会问,好像听的最多的就是唯一ID,包括大量的文章都是讲分布式唯一ID的生成的,好像和单据号相关的很少。...下面从不同的角度来分析一下:   1)唯一性:唯一是ID其实更多的是为了保证这个ID在整个系统中都是唯一的,它对唯一的定义范围更加广。...三、为什么需要全局唯一单据号生成程序    和唯一ID一样,单据号的生成本身也是一个相对稳定并且通用的规则,所以把它提炼成一个单独的程序可以提供更好的复用性,避免了各自项目维护单据号所花费的重复劳动。...特别在互联网行业中的大流量企业,还需要考虑性能和高可用问题。所以真的要把生成单据号这个“小功能”做好,还是需要一定的投入的。...2.每个程序所在服务器上的时钟同步需要做好,因为我们依赖于此保证递增问题。   最终,理论上实际生产环境生成的号码长度在15~19之间。

    1.5K30

    深度学习在搜索业务中的探索与实践

    文章分享了深度学习在酒店搜索NLP中的应用,并重点介绍了深度学习排序模型在美团酒店搜索的演进路线。...本文会首先介绍一下酒店搜索的业务特点,作为O2O搜索的一种,酒店搜索和传统的搜索排序相比存在很大的不同。第二部分介绍深度学习在酒店搜索NLP中的应用。...因为用户是来找信息,网页搜索重点是保证查询结果和用户意图的相关性,而在商品搜索和酒店搜索中,用户的主要目的是查找商品或服务,最终达成交易,目标上有较大区别。...同义词:在北京搜索“一中”和搜索“北京第一中学”,其实都是同一个意思,需要挖掘同义词。 ?...我们尝试了双向LSTM+CRF,并在实际应用中做了些改动:由于在CRF阶段已经积累了一批人工特征,实验发现把这些特征加上效果更好。加了人工特征的双向LSTM+CRF是酒店搜索NER问题的主模型。

    95520

    深度学习在视觉搜索和匹配中的应用

    在这篇文章中,我将介绍一些我们的工作,即使用预先训练好的网络来在遥感数据的目标检测任务中避免标注大型训练数据集的大量繁琐工作。 2019年9月中旬,我参加了北欧遥感会议。...在这篇文章的其余部分,我将展示一些我们在实验室中所做的工作,这些工作是将一个在一个领域(ImageNet自然图像)训练过的网络用于在另一个领域(航拍图像)进行基于图像的搜索。...视觉搜索以及所需的训练数据 深度学习或其他机器学习技术可用于开发识别图像中物体的鲁棒方法。对于来自飞机的航拍图像或高分辨率卫星照片,这将使不同物体类型的匹配、计数或分割成为可能。...我们可以选择再运行一次迭代搜索,通过选择更多的我们满意的片段,并再次运行排序: ? ? 船只仍在前100名之列,这是一个好迹象。请注意,我们之前标记为满意的片段不再出现在交互式细分中。...然而,在我们的例子中,我们选择测试一种更简单的启发式来匹配船:我们在排序中从M之前选择了100个随机的片段(正样本),在N之后选择了100个随机的片段(负样本)。

    1.4K10

    ElasticSearch搜索引擎在SpringBoot中的实践

    :9200/这个地址(该地址需要配到springboot项目中去) ---- Spring工程创建 这部分没有特殊要交代的,但有几个注意点一定要当心 注意在新建项目时记得勾选web和NoSQL中的Elasticsearch...创建工程时勾选Nosql中的es依赖选项 项目自动生成以后pom.xml中会自动添加spring-boot-starter-data-elasticsearch的依赖: ...数据插入效果 我们来做一下搜索的测试:例如我要搜索关键字“南京” 我们在浏览器中输入: http://localhost:6325/entityController/search?...name=南京 搜索结果如下: ? 关键字“南京”的搜索结果 刚才插入的5条记录中包含关键字“南京”的四条记录均被搜索出来了!...当然这里用的是standard分词方式,将每个中文都作为了一个term,凡是包含“南”、“京”关键字的记录都被搜索了出来,只是评分不同而已,当然还有其他的一些分词方式,此时需要其他分词插件的支持,此处暂不涉及

    2.2K50
    领券