在机器学习领域,NFL的意义在于告诉机器学习从业者:”假设所有数据的分布可能性相等,当我们用任一分类做法来预测未观测到的新数据时,对于误分的预期是相同的。”...未必,我们必须要加深对于问题的理解,不能盲目的说某一个算法可以包打天下。然而,从另一个角度说,我们对于要解决的问题往往不是一无所知,因此大部分情况下我们的确知道什么算法可以得到较好的结果。...在某个领域、特定假设下表现卓越的算法不一定在另一个领域也能是“最强者”。正因如此,我们才需要研究和发明更多的机器学习算法来处理不同的假设和数据。...我们有两种假设:
h1: 我们是从{0,2,4,6,8,...,98}中抽取的,即从偶数中抽取
h2: 我们是从{2n}中抽取的
根据上文给出的公式进行计算,我们发现Pr(D|h1)远大于Pr(D|h2...这个时候我们就应选择概率更高的那个。
从奥卡姆剃刀角度思考的话,h1:{2n}在0~99中只有5个满足要求的元素,而h2:{0,2,4,6,8,...,98}却有50个满足要求的元素。