首页
学习
活动
专区
圈层
工具
发布
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Flink与Spark Streaming在与kafka结合的区别!

    当然,单纯的介绍flink与kafka的结合呢,比较单调,也没有可对比性,所以的准备顺便帮大家简单回顾一下Spark Streaming与kafka的结合。...kafka kafka作为一个消息队列,在企业中主要用于缓存数据,当然,也有人用kafka做存储系统,比如存最近七天的数据。...spark Streaming结合kafka Spark Streaming现在在企业中流处理也是用的比较广泛,但是大家都知道其不是真正的实时处理,而是微批处理。...在spark 1.3以前,SPark Streaming与kafka的结合是基于Receiver方式,顾名思义,我们要启动1+个Receiver去从kafka里面拉去数据,拉去的数据会每隔200ms生成一个...还有一点,spark Streaming与kafka的结合是不会发现kafka动态增加的topic或者partition。 Spark的详细教程,请关注浪尖公众号,查看历史推文。

    2K31

    【容错篇】WAL在Spark Streaming中的应用【容错篇】WAL在Spark Streaming中的应用

    【容错篇】WAL在Spark Streaming中的应用 WAL 即 write ahead log(预写日志),是在 1.2 版本中就添加的特性。...何时写BlockAdditionEvent 在揭开Spark Streaming神秘面纱② - ReceiverTracker 与数据导入 一文中,已经介绍过当 Receiver 接收到数据后会调用...在揭开Spark Streaming神秘面纱③ - 动态生成 job一文中介绍了 JobGenerator 每隔 batch duration 就会为这个 batch 生成对应的 jobs。...上图描述了以上两个时机下,是如何: 将 batch cleanup 事件写入 WAL 中 清理过期的 blocks 及 batches 的元数据 清理过期的 blocks 数据(只有当将 spark.streaming.receiver.writeAheadLog.enable...设置为 true才会执行这一步) WAL 在 executor 端的应用 Receiver 接收到的数据会源源不断的传递给 ReceiverSupervisor,是否启用 WAL 机制(即是否将 spark.streaming.receiver.writeAheadLog.enable

    1.5K30

    Kafka+Spark Streaming管理offset的几种方法

    By 大数据技术与架构 场景描述:Kafka配合Spark Streaming是大数据领域常见的黄金搭档之一,主要是用于数据实时入库或分析。...关键词:offset Spark Streaming Kafka+Spark Streaming主要用于实时流处理。到目前为止,在大数据领域中是一种非常常见的架构。...示例 Kafka自身管理offset: 在Kafka 0.10+版本中,offset的默认存储由ZooKeeper移动到了一个自带的topic中,名为__consumer_offsets。...在这个方案中,Spark Streaming任务在启动时会去Zookeeper中读取每个分区的offsets。如果有新的分区出现,那么他的offset将会设置在最开始的位置。...需要注意的点 特别需要注意,在转换过程中不能破坏RDD分区与Kafka分区之间的映射关系。

    57820

    Kafka+Spark Streaming管理offset的几种方法

    By 大数据技术与架构 场景描述:Kafka配合Spark Streaming是大数据领域常见的黄金搭档之一,主要是用于数据实时入库或分析。...关键词:offset Spark Streaming Kafka+Spark Streaming主要用于实时流处理。到目前为止,在大数据领域中是一种非常常见的架构。...示例 Kafka自身管理offset: 在Kafka 0.10+版本中,offset的默认存储由ZooKeeper移动到了一个自带的topic中,名为__consumer_offsets。...在这个方案中,Spark Streaming任务在启动时会去Zookeeper中读取每个分区的offsets。如果有新的分区出现,那么他的offset将会设置在最开始的位置。...需要注意的点 特别需要注意,在转换过程中不能破坏RDD分区与Kafka分区之间的映射关系。

    2.6K32

    揭开Spark Streaming神秘面纱⑥ - Spark Streaming结合 Kafka 两种不同的数据接收方式比较

    DirectKafkaInputDStream 只在 driver 端接收数据,所以继承了 InputDStream,是没有 receivers 的 ---- 在结合 Spark Streaming 及...我们在文章揭开Spark Streaming神秘面纱② - ReceiverTracker 与数据导入分析过 继承ReceiverInputDStream的类需要重载 getReceiver 函数以提供用于接收数据的...揭开Spark Streaming神秘面纱②-ReceiverTracker 与数据导入一文中详细地介绍了 receiver 是如何被分发启动的 receiver 接受数据后数据的流转过程 并在 揭开...Spark Streaming神秘面纱③ - 动态生成 job 一文中详细介绍了 receiver 接受的数据存储为 block 后,如何将 blocks 作为 RDD 的输入数据 动态生成 job 以上两篇文章并没有具体介绍...KafkaUtils#createDirectStream 在揭开Spark Streaming神秘面纱③ - 动态生成 job中,介绍了在生成每个 batch 的过程中,会去取这个 batch 对应的

    94710

    如何管理Spark Streaming消费Kafka的偏移量(一)

    最近工作有点忙,所以更新文章频率低了点,在这里给大家说声抱歉,前面已经写过在spark streaming中管理offset,但当时只知道怎么用,并不是很了解为何要那样用,最近一段时间又抽空看了一个github...本篇我们先从理论的角度聊聊在Spark Streaming集成Kafka时的offset状态如何管理。...spark streaming 版本 2.1 kafka 版本0.9.0.0 在这之前,先重述下spark streaming里面管理偏移量的策略,默认的spark streaming它自带管理的offset...所以比较通用的解决办法就是自己写代码管理spark streaming集成kafka时的offset,自己写代码管理offset,其实就是把每批次offset存储到一个外部的存储系统里面包括(Hbase...场景三: 对正在运行的一个spark streaming+kafka的流式项目,我们在程序运行期间增加了kafka的分区个数,请注意:这个时候新增的分区是不能被正在运行的流式项目感应到的,如果想要程序能够识别新增的分区

    1.9K70

    如何管理Spark Streaming消费Kafka的偏移量(三)

    前面的文章已经介绍了在spark streaming集成kafka时,如何处理其偏移量的问题,由于spark streaming自带的checkpoint弊端非常明显,所以一些对数据一致性要求比较高的项目里面...在spark streaming1.3之后的版本支持direct kafka stream,这种策略更加完善,放弃了原来使用Kafka的高级API自动保存数据的偏移量,之后的版本采用Simple API...本篇文章,会再介绍下,如何手动管理kafka的offset,并给出具体的代码加以分析: 版本: apache spark streaming2.1 apache kafka 0.9.0.0 手动管理offset...例子已经上传到github中,有兴趣的同学可以参考这个链接: https://github.com/qindongliang/streaming-offset-to-zk 后续文章会聊一下为了升级应用如何优雅的关闭的流程序...,以及在kafka扩展分区时,上面的程序如何自动兼容。

    1.4K60

    如何管理Spark Streaming消费Kafka的偏移量(二)

    上篇文章,讨论了在spark streaming中管理消费kafka的偏移量的方式,本篇就接着聊聊上次说升级失败的案例。...事情发生一个月前,由于当时我们想提高spark streaming程序的并行处理性能,于是需要增加kafka分区个数,,这里需要说下,在新版本spark streaming和kafka的集成中,按照官网的建议...spark streaming的executors的数量要和kafka的partition的个数保持相等,这样每一个executor处理一个kafka partition的数据,效率是最高的。...那么问题来了,如果想要提高spark streaming的并行处理性能,只能增加kafka的分区了,给kafka增加分区比较容易,直接执行一个命令即可,不过这里需要注意,kafka的分区只能增加不能减少...接下来我们便增加了kafka分区的数量,同时修改了spark streaming的executors的个数和kafka的分区个数一一对应,然后就启动了流程序,结果出现了比较诡异的问题,表现如下: 造几条测试数据打入

    1.4K40

    flink和spark Streaming中的Back Pressure

    Spark Streaming的back pressure 在讲flink的back pressure之前,我们先讲讲Spark Streaming的back pressure。...Spark Streaming的back pressure是从spark 1.5以后引入的,在之前呢,只能通过限制最大消费速度(这个要人为压测预估),对于基于Receiver 形式,我们可以通过配置 spark.streaming.receiver.maxRate...参数来限制每次作业中每个 Kafka 分区最多读取的记录条数。...栗子 在flink的webui 的job界面中可以看到背压。 正在进行的采样 这意味着JobManager对正在运行的tasks触发stack trace采样。默认配置,这将会花费五秒钟完成。...对比 Spark Streaming的背压比较简单,主要是根据后端task的执行情况,调度时间等,来使用pid控制器计算一个最大offset,进而来调整Spark Streaming从kafka拉去数据的速度

    2.6K20

    【赵渝强老师】Spark Streaming中的DStream

    要开发Spark Streaming应用程序,核心是通过StreamingContext创建DStream。因此DStream对象就是Spark Streaming中最核心的对象。...DStream的全称是Discretized Stream,翻译成中文是离散流。它是Spark Streaming对流式数据的基本数据抽象,或者说是Spark Streaming的数据模型。...DStream的核心是通过时间的采用间隔将连续的数据流转换成是一系列不连续的RDD,在由Transformation进行转换,从而达到处理流式数据的目的。...通过上图中可以看出DStream的表现形式其实就是RDD,因此操作DStream和操作RDD的本质其实是一样的。...由于DStream是由一系列离散的RDD组成,因此Spark Streaming的其实是一个小批的处理模型,本质上依然还是一个批处理的离线计算。

    26010

    Spark中的Spark Streaming是什么?请解释其作用和用途。

    Spark中的Spark Streaming是什么?请解释其作用和用途。 Spark Streaming是Apache Spark中的一个组件,用于处理实时数据流。...它提供了高级别的API,可以以类似于批处理的方式处理连续的数据流。Spark Streaming可以接收来自多个数据源(如Kafka、Flume、HDFS等)的数据流,并对数据进行实时处理和分析。...通过实时处理数据流,可以及时发现和响应数据中的异常情况,提供实时的监控和预警。...在数据流处理过程中,Spark Streaming会将数据流分成小的批次,并在每个批次完成后进行检查点操作,以确保数据的可靠性和一致性。...import org.apache.spark.streaming.api.java.JavaStreamingContext; import org.apache.spark.streaming.kafka010

    75710

    Spark2Streaming读Kerberos环境的Kafka并写数据到Hive

    的示例如《Spark2Streaming读Kerberos环境的Kafka并写数据到HBase》和《Spark2Streaming读Kerberos环境的Kafka并写数据到Kudu》,本篇文章Fayson...环境中Spark2Streaming应用实时读取Kafka数据,解析后存入Hive * 使用spark2-submit的方式提交作业 * spark2-submit --class com.cloudera.streaming.Kafka2Spark2Hive...Spark2的UI界面 ? 2.运行脚本向Kafka的Kafka_kudu_topic生产消息 ? 3.登录Hue在Hive中执行Select查询user_info表中数据 ?...2.同样在scala代码中访问Kafka是也一样需要添加Kerberos相关的配置security.protocol和sasl.kerberos.service.name参数。...3.Spark2默认的kafka版本为0.9需要通过CM将默认的Kafka版本修改为0.10 4.在文章中将接收到的Kafka数据转换成DataFrame,调用DataFrame的saveAsTable

    3.9K40
    领券