subset:用来指定特定的列,根据指定的列对数据框去重。默认值为None,即DataFrame中一行元素全部相同时才去除。...从结果知,参数为默认值时,是在原数据的copy上删除数据,保留重复数据第一条并返回新数据框。 感兴趣的可以打印name数据框,删重操作不影响name的值。...原始数据中只有第二行和最后一行存在重复,默认保留第一条,故删除最后一条得到新数据框。 想要根据更多列数去重,可以在subset中添加列。...如果不写subset参数,默认值为None,即DataFrame中一行元素全部相同时才去除。 从上文可以发现,在Python中用drop_duplicates函数可以轻松地对数据框进行去重。...但是对于两列中元素顺序相反的数据框去重,drop_duplicates函数无能为力。 如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-
最近公司在做关联图谱的项目,想挖掘团伙犯罪。在准备关系数据时需要根据两列组合删除数据框中的重复值,两列中元素的顺序可能是相反的。...本文介绍一句语句解决多列组合删除数据框中重复值的问题。 一、举一个小例子 在Python中有一个包含3列的数据框,希望根据列name1和name2组合(在两行中顺序不一样)消除重复项。...二、基于两列删除数据框中的重复值 1 加载数据 # coding: utf-8 import os #导入设置路径的库 import pandas as pd #导入数据处理的库...import numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 df =...从上图可以看出用set替换frozense会报不可哈希的错误。 三、把代码推广到多列 解决多列组合删除数据框中重复值的问题,只要把代码中取两列的代码变成多列即可。
前面给大家介绍过☞R中的替换函数gsub,还给大家举了一个临床样本分类的具体例子。今天我们接着来分享一下如何根据已有的映射关系来对数据框中的数据进行替换。...例如将数据框中的转录本ID转换成基因名字。我们直接结合这个具体的例子来进行分享。...假设我们手上有这个一个转录本ID和基因名字之间的对应关系,第一列是转录本ID,第二列是基因名字 然后我们手上还有一个这样的bed文件,里面是对应的5个基因的CDs区域在基因组上的坐标信息。...接下来我们要做的就是将第四列中的注释信息,从转录本ID替换成相应的基因名字。我们给大家分享三种不同的方法。..._.*","\\1",bed$V4) #获取转录本号对应的基因名字 symbol=mapping[NM,1] 方法一、使用最原始的gsub函数 #先将bed文件中的内容存放在result1中 result1
就像随机遗失(MAR)一样,测试应该比较有缺失值的记录和无空值的记录的其他变量的分布。 比如:在邮件中缺失的调查对象的问卷结果,完全独立于相关变量和受访者的特征(即记录)。...你可能已经想过,在第二个例子中,只有删除空值是最安全的做法。 在其他两种情况中,删除空值会导致无视整体统计人口中的一组。 在最后一个例子中,记录拥有空值的事实中会携带一些关于实际值的信息。...分配新值 上一个或下一个值:(仅用于完全随机缺失(MCAR)的时间序列)只要你在处理时间序列问题,你就可以使用最后或下一个值填充缺失值。...用常数填充:(仅用于非随机缺失(MNAR))正如我们之前看到的,非随机缺失(MNAR)情况下的缺失值实际上包含很多有关实际值的信息。所以,用常数值来填充空值是可行的(不同于其他类型数值)。...线性插值法:(仅用于完全随机缺失(MCAR)下的时间序列)在具有趋势和几乎没有季节性问题的时间序列中,我们可以用缺失值前后的值进行线性插值来估算出缺失值。 ?
一、简介 在实际工作中,遇到数据中带有缺失值是非常常见的现象,简单粗暴的做法如直接删除包含缺失值的记录、删除缺失值比例过大的变量、用0填充缺失值等,但这些做法会很大程度上影响原始数据的分布或者浪费来之不易的数据信息...,因此怎样妥当地处理缺失值是一个持续活跃的领域,贡献出众多巧妙的方法,在不浪费信息和不破坏原始数据分布上试图寻得一个平衡点,在R中用于处理缺失值的包有很多,本文将对最为广泛被使用的mice和VIM包中常用的功能进行介绍...如上图所示,通过marginplot传入二维数据框,这里选择airquality中包含缺失值的前两列变量,其中左侧对应变量Solar.R的红色箱线图代表与Ozone缺失值对应的Solar.R未缺失数据的分布情况...,蓝色箱线图代表与Ozone未缺失值对应的Solar.R未缺失数据的分布情况,下侧箱线图同理,当同一侧红蓝箱线图较为接近时可认为其对应考察的另一侧变量缺失情况比较贴近完全随机缺失,这种情况下可以放心大胆地进行之后的插补...NA m: 生成插补矩阵的个数,mice最开始基于gibbs采样从原始数据出发为每个缺失值生成初始值以供之后迭代使用,而m则控制具体要生成的完整初始数据框个数,在整个插补过程最后需要利用这m个矩阵融合出最终的插补结果
首先除去地表温度数据中的异常值,接着定义时间与空间窗口,然后用时间、空间、其他地表温度产品三种信息填补地表温度缺失值,最后使用一种简单的时间填补法填补剩余的缺失值。方法的流程图见图1。...精度验证的方法是首先将原始地表温度数据中的一块区域设为缺失,然后用填补地表温度缺失值的方法填补上,最后将填补的结果与原始值比较,得出填补地表温度的精度。...这表明,使用同一天其他地表温度产品中的信息去填补地表温度缺失值比使用相邻日期的同种地表温度产品中的信息去填补缺失值可能会具有较高的精度。...IMA排在第三位,主要是因为IMA中的薄板样条插值法较慢。Gapfill排在第四位,主要是由于Gapfill中的排序过程比较消耗时间。 表2. 填补地表温度数据中缺失值消耗的时间 ?...(3)在实际填补地表温度缺失值的过程中,其他方法会产生一些异常值,而本研究提出的方法不会产生明显的异常值。
excelperfect 在下图1所示的工作簿Data.xlsx的工作表Sheet1中,存放着待使用的数据。 ?...图1 在下图2所示的工作簿GetData.xlsm中,根据列C中的数据,在上图1的工作簿Data.xlsx的列E中查找是否存在相应数据的单元格。 ?...图2 然后,将Data.xlsx中对应行的列I至列K单元格中的数据复制到GetData.xlsm相应的单元格中,如下图3所示。 ?...图3 在工作簿GetData.xlsm中,输入代码: Sub CopyData() '关闭屏幕刷新 Application.ScreenUpdating = False '声明变量...Exit Sub Else '遍历所选的单元格 For Each rng In Selection '在数据工作表中查找相应的值所在的单元格
文章详情:excelperfect 本文的题目比较拗口,用一个示例来说明,如下图1所示,是一个记录员工值班日期的表,在安排每天的值班时,需要查看员工最近一次值班的日期,以免值班时间隔得太近。...A2:A10中的值,如果相同返回TRUE,不相同则返回FALSE,得到一个由TRUE和FALSE组成的数组,然后与A2:A10所在的行号组成的数组相乘,得到一个由行号和0组成的数组,MAX函数获取这个数组的最大值...,也就是与单元格D2中的值相同的数据在A2:A10中的最后一个位置,减去1是因为查找的是B2:B10中的值,是从第2行开始的,得到要查找的值在B2:B10中的位置,然后INDEX函数获取相应的值。...图2 使用LOOKUP函数 公式如下: =LOOKUP(2,1/($A$2:$A$10=$D$2),$B$2:$B$10) 公式中,比较A2:A10与D2中的值,相等返回TRUE,不相等返回FALSE...组成的数组,由于这个数组中找不到2,LOOKUP函数在数组中一直查找,直至最后一个比2小的最大值,也就是数组中的最后一个1,返回B2:B10中对应的值,也就是要查找的数据在列表中最后的值。
缺失值类型 1、随机丢失(MAR,Missing at Random) 指数据丢失的概率与丢失的数据本身无关,而仅与部分已观测到的数据有关。...n : int, default 0过滤后的数据格式中包含的最大列数。 P : int, default 0过滤后的数据框中列的最大填充百分比。...color : default (0.25,0.25,0.25) 填充栏的颜色。 实际使用中,直接使用默认值即能满足大部分情况下的需求。...真值转化法 认为缺失值本身以一种数据分布规律存在。将变量的实际值和缺失值都作为输入维度参与后续数据处理和模型计算中。 不处理 对于一些模型对缺失值有容忍度或灵活处理方法,可不处理缺失值。...本期主要从缺失值分析--缺失值类型、缺失值成因、缺失值影响;以及缺失值处理--丢弃、补全、真值转换、不处理等各个方面讨论缺失值。数据中缺失值会因数据本身的情况会有不同的处理方法,需要具体问题具体分析。
分为两种情况:缺失值取决于其假设值(例如,高收入人群通常不希望在调查中透露他们的收入);或者,缺失值取决于其他变量值(假设女性通常不想透露她们的年龄,则这里年龄变量缺失值受性别变量的影响)。...在前两种情况下可以根据其出现情况删除缺失值的数据,而在第三种情况下,删除包含缺失值的数据可能会导致模型出现偏差。因此我们需要对删除数据非常谨慎。而且,插补数据并不一定能提供更好的结果。...3.2-填补法 简单随机填补:对于每一个缺失值,从已有的该变量数据中随机抽样作为填补值,填补进缺失位置。仅仅考虑到了缺失变量本身,而并没有考虑到相关变量的信息。因此,信息量的利用少。...热平台法:热平台法又称匹配插补法,思路是在完全数据样本中,找到一个和具有缺失值的样本相似的完全数据样本,用完全数据样本值作为填充值,其过程有点类似于K阶近邻的思想。...+Temp 在两个数据框中的对应点。
创建一个欢迎 cookie 利用用户在提示框中输入的数据创建一个 JavaScript Cookie,当该用户再次访问该页面时,根据 cookie 中的信息发出欢迎信息。...cookie 是存储于访问者的计算机中的变量。每当同一台计算机通过浏览器请求某个页面时,就会发送这个 cookie。你可以使用 JavaScript 来创建和取回 cookie 的值。...的欢迎词。而名字则是从 cookie 中取回的。 密码 cookie 当访问者首次访问页面时,他或她也许会填写他/她们的密码。密码也可被存储于 cookie 中。...当他们再次访问网站时,密码就会从 cookie 中取回。 日期 cookie 当访问者首次访问你的网站时,当前的日期可存储于 cookie 中。...日期也是从 cookie 中取回的。
在数据分析和建模中,经常会遇到变量值缺失的情况,这是非常常见的。为了保证数据指标的完整性以及可利用性,通常我们会采取特殊的方式对其进行处理。...存储的是每个变量缺失情况的数据框 柱形图可视化 import matplotlib.pyplot as pltimport pylab as pl fig = plt.figure(figsize=(...一般不建议这样做,因为很可能会造成数据丢失、数据偏移。...# 去掉缺失比例大于80%以上的变量data=data.dropna(thresh=len(data)*0.2, axis=1) 方式2:常量填充 在进行缺失值填充之前,我们要先对缺失的变量进行业务上的了解...随机森林算法填充的思想和knn填充是类似的,即利用已有数据拟合模型,对缺失变量进行预测。
在数据分析和建模中,经常会遇到变量值缺失的情况,这是非常常见的。为了保证数据指标的完整性以及可利用性,通常我们会采取特殊的方式对其进行处理。...False) # miss_analy 存储的是每个变量缺失情况的数据框 柱形图可视化 import matplotlib.pyplot as plt import pylab as pl fig =...一般不建议这样做,因为很可能会造成数据丢失、数据偏移。...# 去掉缺失比例大于80%以上的变量 data=data.dropna(thresh=len(data)*0.2, axis=1) 方式2:常量填充 在进行缺失值填充之前,我们要先对缺失的变量进行业务上的了解...随机森林算法填充的思想和knn填充是类似的,即利用已有数据拟合模型,对缺失变量进行预测。
team.head() 二、查看数据框中的数据和联机帮助信息 1、查看特殊行的数据 (1)查看前n行:head(n),不指定n时默认前5行。...索引器中的len(df)是想把当前数据框的长度作为新增加行的行标签。...的过滤条件要求显式的指定某一列 六、处理缺失值 1、Pandas中缺失值的表示 Pandas表示缺失值的一种方法是使用NaN(Not a Number),它是一个特殊的浮点数;另一种是使用Python中的...Pandas对象 notnull(): 与isnull()相反 dropna(): 返回一个删除缺失值后的数据对象 fillna(): 返回一个填充了缺失值之后的数据对象 (1)判断是否含有缺失值: data.isnull...df.dropna(axis='columns', how='all') 3、 填充缺失值 (1)用单个值填充,下面的例子使用0来填充缺失值: df.fillna(0) (2)从前向后填充(forward-fill
作为一只菜鸟,研究了一个上午+一个下午,才把属性表的更新修改搞了出来,记录一下: 我的需求是: 已经在文件地理数据库中存放了一个ITable类型的表(不是要素类FeatureClass),注意不是要素类...FeatureClass的属性表,而是单独的一个ITable类型的表格,现在要读取其中的某一列,并统一修改这一列的值。...表在ArcCatalog中打开目录如下图所示: ? ?...false); int fieldindex = pTable.FindField("JC_AD");//根据列名参数找到要修改的列 IRow row =...= "X";//新值,可以根据需求更改,比如字符串部分拼接等。
6 对缺失值的处理 现实中的数据存在很多噪音的同时,缺失值也非常的常见。缺失值的存在会影响后期的数据分析或挖掘工作,那么缺失值的处理有哪些方法呢?...6.1 删除法 当数据中某个变量大部分值都会缺失值时,可以考虑删除该变量; 当缺失值时随机分布的,且缺失的数量并不是很多时,可以删除这些缺失的观测; 默认情况下,dropna会删除任何含有缺失值的行...inplace:修改调用这对象而不产生副本 limit:(对于前向和后项填充)可以连续填充的最大数量 使用一个常量来填补缺失值,可以使用fillna函数实现简单的填补工作 1.用0填补所有缺失值 df.fillna...将多层次索引的序列转换为数据框的形式 s.unstack() 期中 期末 小张 1 2 老王 3 4 以上是对序列的多层次索引,接下来将对数据框的多层次索引,多层索引的形式类似excel中的如下形式...在数据框中使用多层索引,可以将整个数据集控制在二维表结构中,这对于数据重塑和基于分组的操作(如数据透视表的生成)比较有帮助。以test_data二维数据框为例,构造一个多层索引数据集。
>=6 & sums<=8]="mid" size[sums>8]="high" size[sums==13]=NA }) 结果如下所示: 如果要修改数据框中已有的数据和变量名...⑵特殊值 ①缺失值 在实际研究中,缺失值是难以避免的(不能将缺失值NA当做0来对待),可以使用函数is.na()来判断是否存在缺失值,该函数可以作用于向量、矩阵、数据框等对象,返回值为对应的逻辑值,如下所示...: 缺失值是无法进行比较运算的,很多函数都有参数na.rm选项来移除缺失值,如下所示: 可以使用函数na.omit()来移除变量中缺失值或矩阵、数据框含有缺失值的行,如下所示: ②日期值 在R中,...然而在微生物生态中,我们倾向于认为微生物群落是一个整体,不同样品之间物种的相对丰度是有可比较的实际意义的,因此最常用的就是总和标准化(当然在不涉及丰度比较的聚类和排序分析中各种标准化方法都可以尝试,在传统群落研究里...points():在以由图形绘制点图 lines():在已有图形绘制线图 plot.new():绘制新的图形,如若不设置参数,绘制一个新的空白图形 segments():根据起止点坐标,在已有图形添加直线
因为最近事情略多,最近更新的不勤了,但是学习的脚步不能停,一旦停下来,有些路就白走了,今天就盘点一下R语言和Python中常用于处理重复值、缺失值的函数。...在R语言中,涉及到数据去重与缺失值处理的函数一共有下面这么几个: unique distinct intersect union duplicated #布尔判断 is.na()/!...pandas中的序列和数据框都有固定的缺失值检测、描述、差值方法: myserie=pd.Series(["A","B",np.nan,"C"]) mydata=pd.DataFrame({ "A":[...#针对数据框而言,默认情况下,dropna丢弃含有缺失值的行。...(针对pandas中的序列和数据框) 缺失值处理: nansum/nanmean/nanmin/nanmax isnull dropna fillna
使用Pandas的 dropna() 直接删除缺失值。 使用 sklearn.preprocessing 中的 Imputer 方法对缺失值进行填充和替换,支持3种填充方法。...01 缺失值处理 在缺失值的处理上,主要配合使用 sklearn.preprocessing 中的Imputer类、Pandas和Numpy。...同时,数据框中增加两个缺失值数据。...上述过程中,主要需要考虑的关键点是缺失值的替换策略,可指定多种方法替换缺失值,具体根据实际需求而定,但大多数情况下均值、众数和中位数的方法较为常用。如果场景固定,也可以使用特定值(例如0)替换。...完成后在输出的结果中可以看到,删除了 index 值为1的数据行。
领取专属 10元无门槛券
手把手带您无忧上云