数据可视化技术的基本思想是将数据库中每一个数据项作为单个图元元素表示,大量的数据集构成数据图像, 同时将数据的各个属性值以多维数据的形式表示,可以从不同的维度观察数据,从而对数据进行更深入的观察和分析。 图表库 C3 – 以 d3 为基础构建的可重用图表库 Chart.js – 带有 canvas 标签的图表 Chartist.js – 具有强大浏览器兼容能力的响应式图表 Dimple – 适用于业务分析的面向对象的 API Dygraphs – 适用于大型数据集的交互式线性图表库 Echarts – 针对
导语:今天我们带来一篇来自 Adobe 工程师 Rohit Boggarapu 的文章。他在文章中介绍了一些适合网页开发者的数据可视化和绘图工具,让你不必再花大力气与枯燥的数据抗争。部分工具不要求写代码也可以使用!
draw.io 是一款强大的免费在线图表绘制工具,支持创建流程图、组织结构图、时序图等多种图表类型。它提供丰富的形状库、强大的文本编辑和样式设置功能,使用户能够轻松创建专业级图表。draw.io 具有用户友好的界面,支持实时协作,可以存储到云端服务,并提供多种导出选项。作为一款开源软件,它广泛用于个人、教育和小型团队,为用户提供了灵活、便捷的图表绘制体验。
各类图表功能,小程序自带API并没有提供,所以很多人就用了其他方法来实现,极乐大叔将这些实现方法和教程聚合一下,以便大家能够迅速而方便的使用。 — 相关文章 — 在微信小程序中绘制图表(part
在大数据时代,很多时候我们需要在网页中显示数据统计报表,从而能很直观地了解数据的走向,开发人员很多时候需要使用图表来表现一些数据。随着Web技术的发展,从传统只能依靠于flash、IE的vml,各个浏览器尚不统一的svg,到如今规范统一的canvas、svg为代表的html5技术,表现点、线、面要素的技术已经越来越规范成熟。我把前端数据可视化分为了五种: 1.图表 2.图谱 3.地图 4.关系图 5.立体图 我将按照顺序介绍62款前端可视化插件,下面就分享下其中34款图表插件: 1.amcharts url
每天上班必须做的一件事情,就是打开我们全球最大的程序员交友社区GitHub,因为这上面有太多开源的宝贝了,每天都乐此不疲,深耕于此,当然也收获了很多有用的东西,写出来分享一下。
Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。
从数据获得信息的最佳方式之一是,通过视觉化方式,快速抓住要点信息。另外,通过视觉化呈现数据,也揭示了令人惊奇的模式和观察结果,是不可能通过简单统计就能显而易见看到的模式和结论。
测试平台的数据展示与分析,我们主要使用开源工具ECharts来进行数据的展示与分析。
现代社会早已进入读图时代,图像在一定上程度上取代了文字,占据了主导地位。对于数据分析来说,一张清晰的可视化图表确实比纷繁复杂的数字更清晰美观。随着科技的发展以及可视化需求的急剧增大,涌现了大批的数据可视化工具,通过对比分析市面上众多的数据可视化工具之后,我们挑选了几款给大家进行参考。
文章首发:《如何在 Vue 中加入图表 - Vue echarts 使用教程 - 卡拉云》
数据可视化之初级篇 零编程工具 1. Tableau Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决
为了使图表更具表现力,可以使用混搭图表对数据进行展现。 当多个系列的数据存在极强的不可分离的关联意义时,为了避免在同一个直角系内同时展现时产生混乱,需要使用联动的多图表对其进行展现。
D3和Kendo UI只是在web应用程序中创建图表的两种方式,选项范围从简单地在屏幕上绘制图形到使用复杂的图表组件。D3和Kendo UI都很受欢迎,两者都能完成工作。然而,相似之处到此为止,这两种方法代表了非常不同的方法,具有非常不同的特性。
Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。Tableau的客户包括巴克莱银行,Pandora和Citrix等企业
很多人提到Tableau、Power BI等老牌可视化工具,这些工具确实引领了可视化的风潮,有开疆拓土之功。
本文介绍如何使用Mermaid绘制UML图。Mermaid 是一种轻量级的图形描述语言,用于绘制流程图、时序图、甘特图等各种图表。它采用简单的文本语法,使得用户能够快速绘制各种复杂图表,而无需深入学习图形绘制工具。通过简单的文本语法,用户可以绘制各种类型的图表。它适用于各种场景,包括流程图、时序图、甘特图等。使用Mermaid,你可以更轻松地表达和分享你的图形设计。
Mermaid 作为图表绘制工具越来越多的受到开发人员的欢迎。它基于 Javascript ,通过解析类 Markdown 的文本语法来实现图表的创建和动态修改,可以使用这个工具来进行包括流程图,时序图等图表的绘制。可以将其看做是 Markdown 的一个插件。
各个互联网公司通过大量的用户数据、信息进行统计分析,而这些大量繁杂的数据在经过可视化工具处理后,就能以图形化的形式展现在用户面前,清晰直观。随着各种数据的增加,这种可视化工具越来越得到开发者们的欢迎。 下面推荐30款可视化工具供大家选择和使用。 1.iCharts iCharts 提供了一个用于创建并呈现引人注目图表的托管解决方案。有许多不同种类的图表可供选择,每种类型都完全可定制,以适合网站的主题。iCharts 有交互元素,可以从Google Doc、Excel 表单和其他来源中获取
在 JS 程序中,为了实现漂亮的图形、图表和数据可视化,我们选择使用开源库。生活在数据爆炸的时代,我们开发的每一个应用程序几乎都使用或者借助数据来提升用户体验。为了帮助你轻松地为你最喜欢的应用程序添加漂亮的数据可视化,这里列出了 2019 年最好的 JavaScript 数据可视化库(排名不分先后)。
google developers 官方文档: https://developers.google.com/web/tools/chrome-devtools/
注意:使用该种方式引入脚本需要使用webpack工具打包才可运行,Webpack 是目前比较流行的模块打包工具,你可以在使用 webpack 的项目中轻松的引入和打包AntV,这里假设你已经对 webpack 具有一定的了解并且在自己的项目中使用。
英文: Anton Shaleynikov 译文:葡萄城控件 www.cnblogs.com/powertoolsteam/p/top-9-javascript-charting-libraries.html 当前,数据可视化已经成为数据科学领域非常重要的一部分。不同网络系统中产生的数据,都需要经过适当的可视化处理,以便更好的呈现给用户读取和分析。 对任何一个组织来说,如果能够充分的获取数据、可视化数据和分析数据,那么就能很大程度上帮助了解数据产生的深层次原因,以便据此做出正确的决定。 对于前端开发人员
当前,数据可视化已经成为数据科学领域非常重要的一部分。不同网络系统中产生的数据,都需要经过适当的可视化处理,以便更好的呈现给用户读取和分析。 对任何一个组织来说,如果能够充分的获取数据、可视化数据和分析数据,那么就能很大程度上帮助了解数据产生的深层次原因,以便据此做出正确的决定。 对于前端开发人员来说,如果能够掌握交互式网页中的数据可视化技术,则是一项很棒的技能。当然,通过一些 JavaScript 的图表库也会使前端的数据可视化变得更加容易。使用这些库,开发者可以在无需考虑不同的语法所带来的编程难题的情况
图表对于数据的可视化和网站的吸引力非常重要。可视化演示使得分析大块数据和传达信息变得更加容易。 图表库使您能够以一种令人惊叹的、易于理解的和交互式的方式可视化数据,并改进您的网站设计。
在数字经济时代,人们需要对大量的数字进行分析,帮助用户更直观的察觉差异,做出判断,减少时间成本。当然,你可能想象不到这种数据可视化的技术可以追溯到2500年前世界上的第一张地图,但是,如今利用各种形态
在新的HTML5标准中,新增了一个非常重要的元素—canvas元素。使用该元素,可以在页面中直接进行各种复杂图形的制作。因此,如果使用该元素绘制统计图,比之前使用服务器端控件来生成统计图的方法更加具有优越性,因为使用了该元素之后,绘制统计图的工作是直接在客户端进行的,而不再是在服务器端所完成的了。这不仅意味着不再占用服务器端的资源,而且意味着可以直接利用客户端计算机的强大资源,绘制统计图的速度也就可以大大地得到提高了。而且,因为用来控制canvas图形绘制的脚本代码是可以被压缩的,可以被缓存的,所以也就可以
在开源世界中,某些库为数据可视化提供了许多可能性,包括图形或网络表示。其他库仅专注于网络图表示。通常,这些库比通用库提供更多的功能。您还将找到商业图形可视化库。商业图书馆的优势在于可以保证持续的技术支持和先进的性能。
Python有许多可视化工具,但是我主要讲解matplotlib(http://matplotlib.sourceforge.net)。此外,还可以利用诸如d3.js(http://d3js.org/)之类的工具为Web应用构建交互式图像。 matplotlib是一个用于创建出版质量图表的桌面绘图包(主要是2D方面)。该项目是由John Hunter于2002年启动的,其目的是为Python构建一个MATLAB式的绘图接口。如果结合使用一种GUI工具包(如IPython),matplotlib还具有诸如缩放
增加了一个【EasyShu图表宝典】功能,方便大家快速浏览EasyShu所有图表,也可以结合筛选功能,缩小范围去查看特定场景、兴趣、标签的图表,双击后可打开对应的图表示例文件进一步详细了解。
tldraw是一款开源的Web绘图工具,可以使用它创建并共享流程图、线框图、原型、图表和其他可视化内容。
又是一月结束,打工人准时准点的汇报工作如期和大家见面啦。提到汇报,必不可少的一部分就是数据的汇总、分析。
数据可视化的工具和程序库已经极大丰盛,当你习惯其中一种或数种时,你会干得很出色,但是如果你因此而沾沾自喜,就会错失从青铜到王者的新工具和程序库。如果你仍然坚持使用Matplotlib(这太神奇了),Seaborn(这也很神奇),Pandas(基本,简单的可视化)和Bokeh,那么你真的需要停下来了解一下新事物了。例如,python中有许多令人惊叹的可视化库,而且通用化程度已经很高,例如下面这五个:
作为一名全栈开发者,我经常喜欢用各类流程图、思维导图软件来梳理与总结当前的技术堆栈。善用图表的好处,在于能帮我快速地进行跳跃式阅读思考与知识整理。
ECharts 是一个基于 JavaScript 的开源可视化图表库,涵盖各行业图表,多达20多种图表和十几种组件,支持各种图表和组件的任意组合,满足各种需求,也是前端项目中大屏应用最多的。
今天介绍下 Chrome dev tools 家族的一个小兄弟,它在 Chrome 57 之前叫作「Timeline」,而现在换了个更长的马甲 —— 「Performance」,毕竟名字要「长~~~~~~~~~」更能吸引注意。
工欲善其事,必先利其器。好的工具可以大大提升你的工作效率,并获得身边人的羡慕和赞赏。今天,我们就来向小伙伴们分享一大波非常实用的工具,武装你的大脑。 ▲图表类 iCharts 简介:各种主题的开放图
开篇主要是介绍了一些常用的数据可视化工具和图表,让各位看官对数据可视化有一个较为全面的认识。后续篇章会深入介绍如何运用工具绘制精美图表的技术细节。 随着DT时代的到来,传统的统计图表很难对复杂数据进行直观地展示。这几年数据可视化作为一个新研究领域也变得越来越火。成功的可视化,如果做得漂亮,虽表面简单却富含深意,可以让观测者一眼就能洞察事实并产生新的理解。可视化(visualization)和可视效果(visual)两个词是等价的,表示所有结构化的信息表现方式,包括图形、图表、示意图、地图、故事情节图以及
在数字图形设计和Web应用开发中,提供一个直观和互动的界面供用户绘制图形是极为重要的。Paper.js是一款功能强大的JavaScript库,它使得在HTML5 Canvas上绘制矢量图形变得简单快捷。本文将介绍如何使用Paper.js实现一个基本的图形绘制工具,允许用户用鼠标画出直线和自由曲线(轨迹)。
领取专属 10元无门槛券
手把手带您无忧上云