首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

图像识别

我们大脑使视觉看起来很容易。人类不会分解一只狮子和一只美洲虎,看一个标志,或认出一个人脸。但这些实际上是用计算机解决难题:他们看起来很容易,因为我们大脑非常好地理解图像。...近几年机器学习领域在解决这些困难问题上取得了巨大进步。特别地,我们发现一种称为深卷积神经网络模型 可以在硬性视觉识别任务上实现合理性能 - 匹配或超过某些领域的人类表现。...通过验证其对ImageNet工作,研究人员已经证明了计算机视觉稳步进展,这是计算机视觉 学术基准。...Google内部和外部研究人员发表了描述所有这些模型论文,但结果仍难以重现。我们现在正在采取下一步,发布在最新型号Inception-v3上运行图像识别的代码。...练习:转移学习是一个想法,如果你知道如何解决一个很好任务,你应该能够转移一些理解来解决相关问题

19.5K80
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    算法集锦(14)|图像识别| 图像识别算法罗夏测试

    随着对基于深度学习图像识别算法大量研究与应用,我们倾向于将各种各样算法组合起来快速进行图片识别和标注。...优化后算法在内存使用和模型训练上表现越来越好,但当这些算法应用于模糊、意义不确定图像时,它们表现又会如何呢?...方法很简单:设定我预测,明确我对每一个预测理解,这样我就可以用正确工具来完成接下来工作。...除了内存使用和可训练参数,每个参数实现细节都有很大不同。与其挖掘每个结构特殊性,不如让看看它们是如何处理这些模糊、意义不明数据。...测试结果 总的来说,我们目标是对预测和预测背后机理有一个快速认识。因此点,我们将预测分值靠前分为一组,并将它们得分相加。

    5.1K20

    基于OpenCV棋盘图像识别

    最终应用程序会保存整个图像并可视化表现出来,同时输出棋盘2D图像以查看结果。 (左)实时摄像机进给帧和棋盘(右)二维图像 01....数据 我们对该项目的数据集有很高要求,因为它最终会影响我们实验结果。我们在网上能找到国际象棋数据集是使用不同国际象棋集、不同摄影机拍摄得到,这导致我们创建了自己数据集。...使用低级和中级计算机视觉技术来查找棋盘特征,然后将这些特征转换为外边界和64个独立正方形坐标。该过程以Canny边缘检测和Hough变换生成相交水平线、垂直线交点为中心。...3.在冻结层顶部添加了新可训练层。...测试数据混淆矩阵 05. 应用 该应用程序目标是使用CNN模型并可视化每个步骤性能。

    7.4K20

    Airtest图像识别

    Airtest是一款网易出品基于图像识别面向手游UI测试工具,也支持原生Android App基于元素识别的UI自动化测试。...图示为AirtestIDE中脚本运行范例 本文重点是针对Airtest中图像识别进行代码走读,加深对图像识别原理理解(公众号贴出代码显示不全仅供参考,详细代码可以在github查看)。...这里可以看到,Airtest也没有自研一套很牛图像识别算法,直接用OpenCV模板匹配方法。 四、接着看另外一个方法 aircv.find_sift 定义在sift.py里面: ? ?...OpenCV图像识别算法。...六、总结 1、图像识别,对不能用ui控件定位地方,使用图像识别来定位,对一些自定义控件、H5、小程序、游戏,都可以支持; 2、支持多个终端,使用图像识别的话可以一套代码兼容android和ios哦,

    12.4K21

    基于转移学习图像识别

    但是,全世界各个研究团队(例如牛津,谷歌,微软)都拥有足够计算能力,时间和金钱,而且以前可能已经解决过一些类似的问题。我们该如何利用他们已经完成工作呢?...这两层目的是简化寻找特征过程,并减少过度拟合数量。典型CNN架构如下所示: ? 03.训练自己CNN模型 如果我们要使用预训练模型,那么知道什么是卷积层和池化层有什么意义呢?...总结一下,我们需要做包括: 1.选择一个有很多狗狗数据库 2.找到预先训练过模型对狗进行分类(例如VGG16和Resnet50) 3.添加我们自己自定义图层以对狗品种进行分类 用于转移学习自定义层...方法1:具有损失完全连接层 通过完全连接层,所有先前节点(或感知)都连接到该层中所有节点。这种类型体系结构用于典型神经网络体系结构(而不是CNN)。...最重要是,我们花费了很少时间来构建CNN架构,并且使用GPU功能也很少。 使用预先训练模型大大节省我们时间。在此过程中,改进了识别狗狗分类模型。但是,该模型仍然有过拟合趋势。

    1.6K20

    基于TensorFlow和Keras图像识别

    简介 TensorFlow和Keras最常见用途之一是图像识别/分类。通过本文,您将了解如何使用Keras达到这一目的。 定义 如果您不了解图像识别的基本概念,将很难完全理解本文内容。...其设计原则旨在用户友好和模块化,尽可能地简化TensorFlow强大功能,在Python下使用无需过多修改和配置 图像识别(分类) 图像识别是指将图像作为输入传入神经网络并输出该图像某类标签。...图像分类子集是对象检测,对象特定实例被识别为某个类如动物,车辆或者人类等。 特征提取 为了实现图像识别/分类,神经网络必须进行特征提取。特征作为数据元素将通过网络进行反馈。...在图像识别的特定场景下,特征是某个对象一组像素,如边缘和角点,网络将通过分析它们来进行模式识别。 特征识别(或特征提取)是从输入图像中拉取相关特征以便分析过程。...因为所有参数调整,结合对验证集重新测试,都意味着网络可能已经学会了验证集某些特征,这将导致无法推广到样本外数据。 因此,测试集目的是为了检测过度拟合等问题,并且使模型更具实际应用价值。

    2.8K20

    图像识别——MNIST

    “深度学习是一个基于赋予大型神经网络多层隐含机器学习领域,以学习具有较强预测能力特征。...尽管深度学习技术是早期神经网络后代,但它们利用无监督和半监督学习,结合复杂优化技术,实现了最新精确度。”...自动编码器通过使用与训练实例和目标标签相同未标记输入来训练。去噪自动编码器是通过随机破坏自编码器输入矩阵来训练。...本文使用NEURAL程序来介绍一下在SAS里如何实现图像识别。例子所用数据集是MNIST数据集,从http://yann.lecun.com/exdb/mnist/可以获取。...训练集 (training set) 由来自 250 个不同人手写0-9数字构成,正确地识别这些手写数字是机器学习研究中一个经典问题

    5.2K40

    图像识别解释方法视觉演变

    正文字数:4270 阅读时长:7分钟 图像识别(即 对图像中所显示对象进行分类)是计算机视觉中一项核心任务,因为它可以支持各种下游应用程序(自动为照片加标签,为视障人士提供帮助等),并已成为机器学习...在过去十年中,深度学习(DL)算法已成为最具竞争力图像识别算法。但是,它们默认是“黑匣子”算法,也就是说很难解释为什么它们会做出特定预测。 为什么这会成为一个问题呢?...在本文中,我们概述了一些为图像识别而发明解释方法,讨论了它们之间权衡,并提供了一些示例和代码,您可以自己使用Gradio来尝试这些方法。...尽管梯度上升是十分可行,但人们发现这种被称为Vanilla梯度上升原始公式有一个明显缺点:它传播负梯度,最终会导致干扰和噪声输出。为解决这些问题,我们提出了一种新方法——“引导反向传播”。...针对每幅图像计算类别分数相对于输入像素梯度,并对其进行平均以获得每个像素全局重要性值。IG除了理论特性外,还解决了普通梯度上升另一个问题:饱和梯度。

    1.1K30

    图像识别在测试中应用

    但是在实际应用中,无论是web端还是移动端,仍有很多时候需要根据页面内容、页面中图像进行定位及判定,是这些手段所达不到,这里我们来介绍一下关于图像识别在测试中应用。...在具体讲解之前,先介绍一下图像识别在测试中能够想到引用场景: 测试过程中,通过对待测软件进行屏幕截图,采用图像识别算法识别截图中是否包含预定义可操作控件,如果存在,则触发控制指令,也就达到了图像识别引导测试过程目的...- 测试结果验证,通过对待测软件界面进行截图操作,利用图像识别技术将截图与期望结果进行匹配,从而自动获取测试结果。- 通过图像识别对比来进行性能测试,比如app测试中常见响应时间测试。...,有了webdriver等ui自动化后为什么还要用图像识别呢?...2、一些游戏或者一些特殊应用ui控件比较难以识别,然而通过图像识别却可以轻易找到对应元素。 3、代码学习成本比较低,常用函数已经封装完毕,并且简单易懂。

    85320

    图像识别——突破与应用

    这使与非结构化数据增长相关常见问题变得复杂化,例如数据保护成本不断上升,基础架构复杂性增加,数据消费增长速度快于IT存储占用增长。 创建和共享图像并不是图像识别流行唯一原因。...这是图像识别史上一个转折点,也是这个领域前途光明开始。这个成就将焦点从传统图像识别方法转移到了使用深度神经网络新方法。...图像识别与虚拟和增强现实进步相结合,将继续为游戏产业带来革命性变化。 4.5 对物体和场景建模 图像识别最重要应用之一将是健康行业医疗和生物医学图像分析。...传统上,癌症和心脏病等疾病诊断依赖于X射线检查和扫描,发现这些问题早期预警信号。图像识别不仅可以帮助医生在这些情况下发现问题,而且还可以给予大量不同例子来训练,有助于医生诊断。...配备有先进图像识别能力智能移动机器人具有许多商业(例如服务业)和个人用途。最先进图像识别最新应用是协助自动驾驶汽车和汽车驾驶员。

    14.4K113

    基于TencentOS Tiny图像识别案例

    RISC-V芯片应用实例等。...例如:通过CH32V307芯片驱动OV2640摄像头采集指示灯运行状态,后续通过图像识别算法提取颜色特征,并将结果上报到云平台。...近来,在官方例程基础上进行了优化改进,解决了图像识别算法泛化能力差等弊端,具体内容如下所示:硬件 硬件结构极为简单,主要包含主控CH32V307、ESP8266 wifi模块、ST7789...图片优化改进 嵌入式设备应用场景一般较为复杂,很难通过颜色识别算法提取图像全部特征,例如:智能门禁系统中涉及的人脸识别,自动抄表系统涉及文字信息提取等。...因此,近来想要把人工智能算法嵌入到边缘计算端,最终实现云-边-端高效协同,优化嵌入式设备执行速度以及图像识别准确率。

    3K154

    智能视频图像识别

    智能视频图像识别系统选用人工智能识别算法技术,能够随时监控和剖析现场各大品牌相机中视频图像。...智能视频图像识别系统软件关键运用相机拍摄图像开展智能实时分析,抓拍监控识别和检作业现场违规操作及行为,并向责任人推送信息。...与传统监控系统软件对比,智能视频图像识别系统软件增强了自主监控报警能力,增强了数据检测和解析功能。智能视频图像识别系统具备很大经济价值和广泛应用领域,引起了国内外研究工作人员广泛关注。...融合国内外研究现况,分析了智能视频视频监控系统仍存在一些问题。在智能视频视频监控系统中,人员运动目标检测是很多智能控制模块基本功能,检验精确性决定了智能视频视频监控系统精确性。...智能视频图像识别可应用于全部必须生产安全/工程施工场地,包含在建工地、在建地铁/铁路线/道路、新建加工厂和经营加工厂、煤矿业和工作船,给施工作业产生很大方便。

    5.7K40

    图像识别(自己训练模型)

    1.数据集:从VGG网下载,这是一些各种猫和狗图片(每个文件夹下面大约200张图片,有点少,所以训练结果并不是很好,最好是上万数据) 2.做得图像识别网络模型:(这个是技术核心,但是在神经网络里也有一句话...,就是大量数据训练网络也能超过一个优秀网络模型,所以说你数据必须大量,必须多) 3.训练过程就是将这些数据集传入网络,判断哪些猫属于同一种,哪些狗属于同一种,这个就是很复杂过程了,我用是GPU...加速tensorflow 4.预测:我搜集了一些图片,然后输入到这个网络中,判断这些分类到底对不对 5.结果: 从结果中可以看出,第一个图片就识别成功了,但是第二个就错了,所以需要训练大量数据。...出错原因主要有三个方面: (1)数据太少 (2)网络模型有待优化 (3)各种动物之间差距太小,所以特征值不好提取,比如你用这个模型人和狗,那几乎可以达到百分之百准确率

    5.6K70

    人工智能中图像识别技术

    图像识别技术概述 图像识别技术含义 图像识别是人工智能一个重要领域,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式目标和对像技术。...计算机也采用同样图像识别原理,采用对图像重要特征分类和提取,并有效排除无用多余特征,进而使图像识别得以实现。...图像识别技术过程 由于图像识别技术产生是基于人工智能基础上,所以计算机图像识别的过程与人脑识别图像过程大体一致,归纳起来,该过程主要包括4个步骤: 1是获取信息,主要是指将声音和光等信息通过传感器向电信号转换...随着该技术逐渐发展并不断完善,未来将具有更加广泛应用领域。 基于神经网络图像识别技术 目前,基于神经网络图像识别是一种比较新型技术,是以传统图像识别方式为基础,有效融合神经网络算法。...小编相信,通过本次科普,很多同学都对图像识别有了更深理解,希望可以拓宽同学们思路,利用人工智能图像识别技术解决更多问题,造福社会,造福世界!

    2.5K10
    领券