首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

TensorFlow学习笔记--自定义图像识别

如果将VGG16结构用于一个新数据集,就要去掉最后一层全连接层,因为最后一层全连接层输入是前一层特征,输出是1000类概率,正好对应了ImageNet中1000个类别,但是在这里,我们类别只有...这时,网络参数初始化值就不是随机生成了,而是利用VGG16在ImageNet上已经训练好参数作为训练初始值。...代码结构如下: 文件名/文件夹名 说明 datasets/ 训练时需要用到数据库,训练自己数据时必须在这里进行定义自己数据库 nets/ 常用网络结构 preprocessing/ 针对不同网络定义了不同预处理数据方法...train_image_classificer.py 训练模型入口 eval_image_classificer.py 验证模型性能入口 download_and_convert_data.py 下载并转换数据及各式入口 定义...三、总结 首先简要介绍了微调神经网络基本原理,接着详细介绍了如何使用 TensorFlow Slim 微调预训练模型,包括数据准备、定义 datasets 文件、训练、 验证 、 导出模型井测试单张图片等

74510
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    图像识别

    Google内部和外部研究人员发表了描述所有这些模型论文,但结果仍难以重现。我们现在正在采取下一步,发布在最新型号Inception-v3上运行图像识别的代码。...您可以下载包含定义模型GraphDef存档(从TensorFlow存储库根目录运行): curl -L "https://storage.googleapis.com/download.tensorflow.org...这些值可能看起来有点神奇,但是它们只是由原始模型作者根据他/她想用作输入图像进行培训而定义。如果您有一个自己训练过图表,那么您只需要调整这些值,使其与您在培训过程中使用任何值相匹配。...ToGraphDef()函数完整图形定义。...这是一个在C ++中动态创建小TensorFlow图简单示例,但是对于预先训练Inception模型,我们要从文件中加载更大定义。你可以看到我们如何在LoadGraph()函数中这样做。

    19.5K80

    算法集锦(14)|图像识别| 图像识别算法罗夏测试

    随着对基于深度学习图像识别算法大量研究与应用,我们倾向于将各种各样算法组合起来快速进行图片识别和标注。...优化后算法在内存使用和模型训练上表现越来越好,但当这些算法应用于模糊、意义不确定图像时,它们表现又会如何呢?...方法很简单:设定我预测,明确我对每一个预测理解,这样我就可以用正确工具来完成接下来工作。...除了内存使用和可训练参数,每个参数实现细节都有很大不同。与其挖掘每个结构特殊性,不如让看看它们是如何处理这些模糊、意义不明数据。...测试结果 总的来说,我们目标是对预测和预测背后机理有一个快速认识。因此点,我们将预测分值靠前分为一组,并将它们得分相加。

    5.1K20

    基于OpenCV棋盘图像识别

    数据 我们对该项目的数据集有很高要求,因为它最终会影响我们实验结果。我们在网上能找到国际象棋数据集是使用不同国际象棋集、不同摄影机拍摄得到,这导致我们创建了自己数据集。...我使用国际象棋和摄像机(GoPro Hero6 Black以“第一人称视角”角度)生成了自定义数据集,这使我模型更加精确。该数据集包含2406张图像,分为13类(请参阅下文)。...自定义数据集细分 为了构建该数据集,我首先创建了capture_data.py,当单击S键时,该视频从视频流中获取一帧并将其保存。..., class_mode = 'categorical', color_mode = 'rgb', shuffle=False) 我们没有从头开始训练模型,而是通过利用预先训练模型并添加了使用我定义数据集训练顶层模型来实现转移学习...model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['categorical_accuracy']) 4.在自定义数据集上训练新层

    7.4K20

    Airtest图像识别

    图示为AirtestIDE中脚本运行范例 本文重点是针对Airtest中图像识别进行代码走读,加深对图像识别原理理解(公众号贴出代码显示不全仅供参考,详细代码可以在github查看)。...这里可以在settings.py 里面找到默认定义: CVSTRATEGY = ["tpl", "sift"] 如果某个方法匹配上了,就返回匹配结果,而_find_sift_in_predict_area...这里可以看到,Airtest也没有自研一套很牛图像识别算法,直接用OpenCV模板匹配方法。 四、接着看另外一个方法 aircv.find_sift 定义在sift.py里面: ? ?...OpenCV图像识别算法。...六、总结 1、图像识别,对不能用ui控件定位地方,使用图像识别来定位,对一些自定义控件、H5、小程序、游戏,都可以支持; 2、支持多个终端,使用图像识别的话可以一套代码兼容android和ios哦,

    12.4K21

    基于转移学习图像识别

    这两层目的是简化寻找特征过程,并减少过度拟合数量。典型CNN架构如下所示: ? 03.训练自己CNN模型 如果我们要使用预训练模型,那么知道什么是卷积层和池化层有什么意义呢?...04.使用转移学习逻辑 这就是为什么要使用转移学习,我们应该尽可能多地使用迁移学习,而不是构建自己体系结构。转移学习实际上是采用预先训练神经网络,对其进行定义,并将其用于自己预测任务。...总结一下,我们需要做包括: 1.选择一个有很多狗狗数据库 2.找到预先训练过模型对狗进行分类(例如VGG16和Resnet50) 3.添加我们自己定义图层以对狗品种进行分类 用于转移学习定义层...评估预训练模型和自定义性能 为此,让我们尝试VGG16和Resnet50预先训练模型,并在顶部添加方法2架构,看看会发生什么。我们将在每种CNN架构测试集上报告损失函数和准确性。...最重要是,我们花费了很少时间来构建CNN架构,并且使用GPU功能也很少。 使用预先训练模型大大节省我们时间。在此过程中,改进了识别狗狗分类模型。但是,该模型仍然有过拟合趋势。

    1.6K20

    图像识别——MNIST

    “深度学习是一个基于赋予大型神经网络多层隐含机器学习领域,以学习具有较强预测能力特征。...尽管深度学习技术是早期神经网络后代,但它们利用无监督和半监督学习,结合复杂优化技术,实现了最新精确度。”...自动编码器通过使用与训练实例和目标标签相同未标记输入来训练。去噪自动编码器是通过随机破坏自编码器输入矩阵来训练。...本文使用NEURAL程序来介绍一下在SAS里如何实现图像识别。例子所用数据集是MNIST数据集,从http://yann.lecun.com/exdb/mnist/可以获取。...训练集 (training set) 由来自 250 个不同人手写0-9数字构成,正确地识别这些手写数字是机器学习研究中一个经典问题。

    5.2K40

    基于TensorFlow和Keras图像识别

    简介 TensorFlow和Keras最常见用途之一是图像识别/分类。通过本文,您将了解如何使用Keras达到这一目的。 定义 如果您不了解图像识别的基本概念,将很难完全理解本文内容。...其设计原则旨在用户友好和模块化,尽可能地简化TensorFlow强大功能,在Python下使用无需过多修改和配置 图像识别(分类) 图像识别是指将图像作为输入传入神经网络并输出该图像某类标签。...该标签对应一个预定义类。图像可以标记为多个类或一个类。如果只有一个类,则应使用术语“识别”,而多类识别的任务通常称为“分类”。...数字图像被渲染为高度、宽度和一些定义像素颜色RGB值,因此被跟踪“深度”是图像具有的颜色通道数量。灰度(非彩色)图像仅包含1个颜色通道,而彩色图像包含3个颜色通道。...然后,对整个图像完成上述过程以实现完整表示。根据参数“步幅”,滤波器在图像其余部分滑动。该参数定义了在计算当前位置值之后,滤波器要滑动像素数。CNN默认步幅取值为2。

    2.8K20

    图像识别在测试中应用

    但是在实际应用中,无论是web端还是移动端,仍有很多时候需要根据页面内容、页面中图像进行定位及判定,是这些手段所达不到,这里我们来介绍一下关于图像识别在测试中应用。...在具体讲解之前,先介绍一下图像识别在测试中能够想到引用场景: 测试过程中,通过对待测软件进行屏幕截图,采用图像识别算法识别截图中是否包含预定义可操作控件,如果存在,则触发控制指令,也就达到了图像识别引导测试过程目的...- 测试结果验证,通过对待测软件界面进行截图操作,利用图像识别技术将截图与期望结果进行匹配,从而自动获取测试结果。- 通过图像识别对比来进行性能测试,比如app测试中常见响应时间测试。...,有了webdriver等ui自动化后为什么还要用图像识别呢?...2、一些游戏或者一些特殊应用ui控件比较难以识别,然而通过图像识别却可以轻易找到对应元素。 3、代码学习成本比较低,常用函数已经封装完毕,并且简单易懂。

    85320

    图像识别解释方法视觉演变

    正文字数:4270 阅读时长:7分钟 图像识别(即 对图像中所显示对象进行分类)是计算机视觉中一项核心任务,因为它可以支持各种下游应用程序(自动为照片加标签,为视障人士提供帮助等),并已成为机器学习...在过去十年中,深度学习(DL)算法已成为最具竞争力图像识别算法。但是,它们默认是“黑匣子”算法,也就是说很难解释为什么它们会做出特定预测。 为什么这会成为一个问题呢?...在以上因素推动下,在过去十年中,研究人员开发了许多不同方法来打开深度学习“黑匣子”,旨在使基础模型更具可解释性。有些方法对于某些种类算法是特定,而有些则是通用。有些是快,有些是慢。...在本文中,我们概述了一些为图像识别而发明解释方法,讨论了它们之间权衡,并提供了一些示例和代码,您可以自己使用Gradio来尝试这些方法。...由于梯度是局部,因此它们不能捕获像素全局重要性,而只能捕获特定输入点灵敏度。通过改变图像亮度并计算不同点梯度,IG可以获得更完整图片,包含了每个像素重要性。 ?

    1.1K30

    基于TencentOS Tiny图像识别案例

    RISC-V芯片应用实例等。...例如:通过CH32V307芯片驱动OV2640摄像头采集指示灯运行状态,后续通过图像识别算法提取颜色特征,并将结果上报到云平台。...近来,在官方例程基础上进行了优化改进,解决了图像识别算法泛化能力差等弊端,具体内容如下所示:硬件 硬件结构极为简单,主要包含主控CH32V307、ESP8266 wifi模块、ST7789...图片优化改进 嵌入式设备应用场景一般较为复杂,很难通过颜色识别算法提取图像全部特征,例如:智能门禁系统中涉及的人脸识别,自动抄表系统涉及文字信息提取等。...因此,近来想要把人工智能算法嵌入到边缘计算端,最终实现云-边-端高效协同,优化嵌入式设备执行速度以及图像识别准确率。

    3K154

    智能视频图像识别

    智能视频图像识别系统选用人工智能识别算法技术,能够随时监控和剖析现场各大品牌相机中视频图像。...智能视频图像识别系统软件关键运用相机拍摄图像开展智能实时分析,抓拍监控识别和检作业现场违规操作及行为,并向责任人推送信息。...与传统监控系统软件对比,智能视频图像识别系统软件增强了自主监控报警能力,增强了数据检测和解析功能。智能视频图像识别系统具备很大经济价值和广泛应用领域,引起了国内外研究工作人员广泛关注。...融合国内外研究现况,分析了智能视频视频监控系统仍存在一些问题。在智能视频视频监控系统中,人员运动目标检测是很多智能控制模块基本功能,检验精确性决定了智能视频视频监控系统精确性。...智能视频图像识别可应用于全部必须生产安全/工程施工场地,包含在建工地、在建地铁/铁路线/道路、新建加工厂和经营加工厂、煤矿业和工作船,给施工作业产生很大方便。

    5.7K40

    图像识别——突破与应用

    这是图像识别史上一个转折点,也是这个领域前途光明开始。这个成就将焦点从传统图像识别方法转移到了使用深度神经网络新方法。...图像识别的最新进展将极大地影响所有的商业用途。 4.3 检测事件 图像识别在视觉监控和安全方面有很多应用。视频图像高效处理提供了丰富信息来识别和分类感兴趣事件。...图像识别与虚拟和增强现实进步相结合,将继续为游戏产业带来革命性变化。 4.5 对物体和场景建模 图像识别最重要应用之一将是健康行业医疗和生物医学图像分析。...配备有先进图像识别能力智能移动机器人具有许多商业(例如服务业)和个人用途。最先进图像识别最新应用是协助自动驾驶汽车和汽车驾驶员。...狭窄的人工智能只是我们迄今为止取得的人工智能一种形式。根据定义,狭义人工智能擅长执行一项任务,如下棋中“走子”、推荐购买产品、做出预测(欺诈,销售等),并提供天气预报。

    14.4K113

    PhotoSynth:图像识别建模技术

    PhotoSynth是微软公司从华盛顿大学购买来一项技术,主要作用是通过平面照片自动建立空间模型,目前已经接近即将发布前夕。 举例来说,游客来到上海,外滩是必去。...假定我们收集了某天中游客拍下所有关于外滩照片,PhotoSynth就能够自动建立一个外滩三维模型,每张照片就是空间中一个点,每个点按照实际位置排列起来,点一下就能自动看到相同地点所有照片。...这就是说,这项技术实际上可以用来处理世界上所有含有地理信息照片,然后将外部环境复原出来。Google Earth只能空中俯视,而PhotoSynth可以让你方佛漫步在每一条街道上!...在Windows Live Lab网站上提供PhotoSynth预览,需要安装一个浏览器插件,然后可以选择查看七个场景,包括宫殿、湖泊、美术馆、寺庙和航天飞机,我推荐安装。 ? (完)

    4.3K100
    领券