首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    算法到实战,如何把深度学习应用到生活?| 回顾

    计算机视觉是一门研究如何使机器“看”的科学,掌握解决具体计算机视觉任务的方法则会帮助我们解决大规模系统的复杂问题,其应用相当广泛,包括并不限于:图像分类,人脸识别;车辆检测,行人检测;语义分割,实例分割;目标跟踪,视频分割;图像生成,视频生成。 为了让大家更好的理解计算机视觉在人工智能领域的强大应用,12月7日晚,上海交通大学卢宪凯博士受AI研习社邀请,开展了一场主题为《计算机视觉概述和深度学习简介》的公开课,卢博士在公开课中给大家介绍了计算机视觉的定义、研究方法和应用举例,重点介绍深度学习发展历史,常见深

    06

    图像识别的原理、过程、应用前景,精华篇!

    图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。 1、图像识别技术的引入 图像识别是人

    010

    利用Tensorflow2.0实现卷积神经网络CNN

    前面几节课我们给大家介绍的都是全连接神经网络,但全连接神经网络有个明显的缺点,那就是当网络层数较多时(尤其是在图像识别任务中),它每层的参数数量容易变得很大,不好控制。所以本节课老shi准备给大家介绍另外一种非常重要的网络结构——卷积神经网络。卷积神经网络(Convolutional Neural Network, CNN)近几年在深度学习中的应用非常广泛,特别是在图像识别、语音识别以及本文处理方面。可以说,卷积神经网络是深度学习中最重要的神经网络之一,例如图像识别中非常有名的LeNet、AlexNet、 ResNet、VGGNet、InceptionNet等网络结构都是在卷积神经网络基础上得来的。

    02
    领券