如今,智慧办公是企业办公领域数字化转型的题中之义。作为国内最早开发的软件办公系统之一,金山办公如何应用深度学习实现复杂场景文档图像识别和技术理解?本文将从复杂场景文档的识别与转化、非文本元素检测与文字识别、文本识别中的技术难点等多个方面进行深度解析。 作者 | 金山办公CV技术团队 出品 | 新程序员 在办公场景中,文档类型图像被广泛使用,比如证件、发票、合同、保险单、扫描书籍、拍摄的表格等,这类图像包含了大量的纯文本信息,还包含有表格、图片、印章、手写、公式等复杂的版面布局和结构信息。早前这些信息均采用
银行卡扫描识别 Ctrip Tech 背景介绍: 图像识别是人工智能的一个重要领域 。为了编制模拟人类图像识别活动的计算机程序,人们提出了不同的图像识别模型。图像识别经历了三个阶段的发展:文字识别,数字图像处理与识别,物体识别。文字识别的研究是从1950年开始的,一般是识别字母,数字和符号,从印刷文字识别到手写文字识别,应用非常广泛。 随着智能手机兴起,手机支付的行为越来越普及。但是用户在手机上输入银行卡卡号时,速度很慢,需要仔细的校对,用户体验很差。美国的PAYPAL 、苹果公司,中国的阿里公司和腾讯都在
"商品识别"、"人脸识别"、"以图搜图"有什么难?这个在 GitHub 上狂圈 Star 3100+ 的项目就能轻松帮你实现!
我们需要 pillow 和 pytesseract 这两个库,pip install 安装就好。 还需要安装 Tesseract-OCR.exe 然后配置下就好了。 具体的环境配置方法请看 python 技术篇-使用pytesseract库进行图像识别之环境配置
目标检测是计算机视觉和数字图像处理的一个热门方向,广泛应用于机器人导航、智能视频监控、工业检测、航空航天等诸多领域,通过计算机视觉减少对人力资本的消耗,具有重要的现实意义。
如果你们想要实现酷炫的"商品识别"、"以图搜图",进军新消费领域却没有相应技术方案,怎么办?
文档比对技术是一种用于比较两份文档之间差异的先进技术。具备较大的技术难点和场景价值。下面将对其技术难点和使用场景进行详细探讨。
这两天被朋友圈里@微信官方要求戴帽的消息刷屏了,会玩的都悄咪咪地用美图秀秀一类的app给自己头像p一顶然后可高兴地表示“哎呀好神奇hhhh”,呆萌的当然就一直等啊等。作为一名坚信“用技术解决需求”的萌新,在这个无聊的周末尝试用python来搞一波事情。 主要思路 准备两张图,一张头像,一张帽子。先祭出人脸识别定位头像中的人脸,给出人脸像素坐标;再根据这个坐标确定帽子放置的坐标;最后将两张图片拼接后输出。(需要注意的是,帽子是不规则图像,除了主体外背景应该是透明的,因此必须是四通道png格式)。gakki酱亲
今天是《上海市生活垃圾管理条例》施行的第2天,这场被称为“史上最严”垃圾分类多次成功占据热搜头条。
哪里下载Mac电脑图片提取文字Text Scanner for Mac 完美兼容版安装包啊,Text Scanner for Mac是一款强大的文本识别工具,由iFotosoft公司开发。这个应用程序使用户能够在Mac上轻松地将纸质文件转换为文本文件,无论何时何地,都可以快速准确地识别和提取文本内容。
本文介绍了如何通过光学字符识别(OCR)技术来识别收据中的文本内容,并探讨了在识别过程中可能遇到的文本噪声问题,以及如何解决这些问题。同时,文章还介绍了如何使用CNN和LSTM等深度学习技术来提高文本识别的准确率。
【新智元导读】有了好的数据,机器学习项目也就成功了一半。希望这份资源清单有助于那些寻找机器学习项目实践的人。对于初学者来说,这绝对是一个金矿。确保你在业余时间选择一些项目,并在上面投入时间和精力,将对你的技术成长大有益处。 大规模通用数据库:从这里入手 data.gov - 这是美国政府开放数据集总部。这些数据集的主题包括气候、教育、能源、金融和更多领域的数据。 data.gov.in - 这是印度政府公开数据库,你可以在这里查找关于印度各行业、气候、医疗保健等数据。同样,稍微改变后缀,就能查看不同地区国家
光学字符识别技术(OCR)目前被广泛利用在手写识别、打印识别及文本图像识别等相关领域。小到文档识别、银行卡身份证识别,大到广告、海报。因为OCR技术的发明,极大简化了我们处理数据的方式。
在计算机视觉领域,特征是为了完成某一特定任务需要的相关信息。比如,人脸检测中,我们需要在图像中提取特征来判断哪些区域是人脸、哪些区域不是人脸,人脸验证中,我们需要在两个人脸区域分别提取特征,来判断他们是不是同一个人,如下图所示,深度神经网络最终得到一个128维的特征用于识别等任务,图片来自Openface
Dev Club 是一个交流移动开发技术,结交朋友,扩展人脉的社群,成员都是经过审核的移动开发工程师。每周都会举行嘉宾分享,话题讨论等活动。 本期,我们邀请了 腾讯 TEG 技术工程师“文亚飞”,为大家分享《深度学习在OCR中的应用》。 下面是分享实录整理: ---- 大家好,我是文亚飞,来自腾讯TEG,目前负责图像识别相关的工作。OCR(光学字符识别)旨在从图片中检测和识别文字信息,本次分享将介绍我们在OCR技术研发过程中的一些方法和经验总结。 一,OCR背景及基本框架介绍 OCR技术从上世纪60年代就开
本篇干货整理自清华大学自动化系教授张长水于2018年4月27日在清华大学数据科学研究院第二届“大数据在清华”高峰论坛主论坛所做的题为《机器学习和图像识别》的演讲。
本文介绍了一种基于深度学习的视频字幕识别和生成方法,包括字符级和单词级两个模块,以及针对视频字幕中字符和单词的识别和生成任务。首先,通过深度学习模型对视频中的字幕进行定位和提取,然后使用字符级和单词级两个模块分别进行字符和单词的识别和生成。实验结果表明,该方法能够有效地识别和生成视频字幕,对于艺术字体、手写字体等难以切分的情况,以及对于视频中的噪声干扰,都具有较高的鲁棒性。
近期,2023年度视觉与学习青年学者研讨会 (Vision And Learning SEminar, VALSE) 在无锡圆满落幕,此研讨会是图像视觉领域的重磅会议。作为智能文档处理领域代表的合合信息自然不会缺席,合合信息出席会议并进行智能文档处理技术研发与实践成果分享,重点介绍了其在版面分析与文档还原技术实现上的新突破。
OCR也叫做光学字符识别,是计算机视觉研究领域的分支之一。它是利用光学技术和计算机技术把印在或写在纸上的文字读取出来,并转换成一种计算机能够接受、人又可以理解的格式。
从古至今,文字经历了数代变革,最终发展成为现在的简体字。近来以来,随着科技的发展,人类变得越来越“懒”,从抛弃纸笔投入电脑的怀抱,再到现在从键盘到语音的转移。虽然不管如何发展,文字依然是人们不可丢弃的东西,但是出于让生活更便利的目的,它也在随着科技而发生变化,比如担当着人工智能基础之一的文字识别技术(OCR)。 OCR是指光学设备(扫描仪、数码相机等)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程,其本质就是利用光学设备去捕获图像并识别文字,将人眼的能力延
View、Window以及Activity主要是用于显示并与用户交互的。这让我们在初学的时候很容易弄混,而且无法理解他们区别以及联系。本文是笔者查阅相关资料后,结合自己的理解写出来。希望能帮你梳理清楚他们各自的工作职责,以及是因为什么需求导致了它们的出现。 1、View 从我之前写的【从Android代码中来记忆23种设计模式 】这篇文章可知,View(包括ViewGroup)使用的是组合模式,即: 将View组成成树形结构,以表示“部分-整体”的层次结构,使得用户对单个对象和组合对象的使用具有一致性。 我
苹果公司近日终于不再遮遮掩掩,发布了自己的首份人工智能研究报告。业内人士称,这对苹果将来推广自己的人工智能应用大有裨益。苹果本月初曾表示,将发布自己的人工智能研究报告。不到一个月的时间,苹果就兑现了承诺。近日,苹果发布了第一份关于人工智能的学术论文。这篇报告阐述了一项新技术,即如何通过计算机生成图像、而非真实图像来训练一种算法的图像识别能力。 苹果在报告中称,在机器学习研究中,使用合成图像(例如,来自一款视频游戏)来训练神经网络要比使用真实图像更有效。因为合成图像数据已经被标记和注释,而真实的图像数据需要有
摘要:在日常生活工作中,我们难免会遇到一些问题,比如自己辛辛苦苦写完的资料,好不容易打印出来却发现源文件丢了;收集了一些名片,却要一个一个地录入信息,很麻烦;快递公司的业务越来越好,但每天需要花费很多时间登记录入运单,效率非常的低。
下面我们就介绍几个开源网站,网站上会经常有一些开源项目,涉及各种各样的项目:SDR、图像处理、古老CPU复现。。。
说的更具体一点,声音识别、图像识别和数字化的人工智能算法,会对零售行业带来根本性的推动。
随着人工智能与机器人技术的发展,几乎所有的行业都开始采用人工智能来取代人类劳动力。 如同圈地运动和农业机械化把劳动力赶出土地的过程一样,眼下这场人工智能革命也正将数不清的人类劳动力从他们原有的“土地”上赶出去,包括仓库管理员、卡车司机、清洁工……这是正在发生的事情,可不是危言耸听。 为了让受影响的人们能够适应这种转变,比尔·盖茨开始认真思考“机器人应该和人类一样交税”的问题。 因为,接下来的五到十年,人工智能的发展将会超出每一个人的想象。 技术环境将发生剧变 而精明如马克·库班
【新智元导读】著名设计机构 IDEO 项目负责人 Kevin Ho 受到李飞飞高徒 Andrej Karpathy 做的“图像地图”的启发,用机器学习算法通过视觉特征对字体进行排序和分类,形成了一个“字体地图”,可以帮助设计人员更简单地发现具有相似审美特征的字体。 机器学习都能干什么?太多了。比如本文的作者 Kevin Ho ( 著名设计机构 IDEO 项目负责人) 就发现一张让他印象深刻的图像。这张奇妙的图片地图是由李飞飞的高徒 Andrej Karpathy 使用 AI 图像识别技术将数千张照片统合形
前面我们讲到了Airtest的基础知识,手机自动化测试IDE-----Airtest基本操作方法,手机自动化测试IDE ----- Airtest的安装和IDE控件详解,今天我们就来说说Airtest的具体操作方法吧,让我们轻松实现软件自动化,真正解放我们的双手吧。
前面我在2万字硬核剖析网页自定义字体解析(css样式表解析、字体点阵图绘制与本地图像识别等)一文中,讲解了通过图像识别来解析自定义字体,但是图像识别的缺点在于准确率并不能达到100%,还需要二次修改。
产品经理(Product manager,缩写 PM)通常是对现有互联网产品进行管理及营销的人员,也负责开发新产品。产品经理自1927年,美国宝洁(P&G)公司出现第一名产品经理以来,逐渐在越来越多的行业中得到应用和推广。任何产品的核心功能的宗旨都是能对用户有所帮助,能够解决用户某一方面的需求,如节省时间、解决问题、提升效率,每一个产品背后都有一个人的需求,产品经理需要将需求转化为产品进行推广和使用。
最近接了一个新需求,需要获取一些信用黑名单数据,但是找了很多数据源,都是同样的几张图片,目测是excel表格的截图,就像下面这样:
项目中用的是Spark Structrued Streaming ,也就是Spark 2.0的新版Streaming,看官方文档也说过性能及实时性会比之前的Dstreaming好点,但是相关的资料相比Dstreaming实在是少很多,现在调优阶段很多都要参考Dstreaming的文章以及经验。
http://blog.sina.com.cn/s/blog_56d988430102w37c.html
由于最近在接触一些OCR的工作,所以本期《晓说AI》和大家分享一下我的一些总结,先从基本的概念讲起。如有错误,还请指正,谢你3千遍。如有疑问,欢迎留言,我会第一时间答复。
刷脸乘车、刷脸支付、刷脸解锁手机......从钱包到手机,这一次干脆彻底解放。生活中似乎不会再有忘带现金、忘记密码的尴尬,因为没有人出门会忘记”带脸“。现实真魔幻,很快在中国什么都可以刷脸了。然后呢? AI 技术的曲折发展,宛若一个经历了大起大落、终磨一剑的绝世高手,坚守半世纪终于再次获得尊重。但是,那些招数又能否经得起现实的考验? 什么是生物识别验证? 在探讨生物识别验证领域中的 AI 攻防之前,我们先了解一下:什么是生物识别验证。 “验证”表示“满足规定要求”,通常可能出现以下几种情况: W
1957年,Frank Rosenblatt从纯数学的角度重新考察这一模型,指出能够从一些输入输出对(X, y)中通过学习算法获得权重W和b。
12月16日,CSCO青年专家委员会2017年度总结大会暨全国肿瘤精英论坛于深圳正式召开,众多专家学者围绕肿瘤治疗、诊疗规范化等话题进行了深入探讨。论坛上,腾讯优图实验室以肺癌、糖网病变及胃癌筛查为例,分享了优图团队的医疗AI在这三大领域的研究状况。 优图人工智能技术与医疗跨界融合 攻坚肺癌早筛实现落地 众所周知,肺癌是全球头号癌症杀手,而中国又是世界上肺癌患者最多的国家。其中一个重要原因,是确诊为肺癌的患者70%已到中晚期,错过了最佳诊断和治疗时间;另外,肺部结节尺寸微小在影像的表现上可能与其他组织或
图像文字作为信息传递的重要载体,图像文字识别对于高效化办公,场景理解等有着重要的意义。
腾讯互娱Turing Lab从创建开始,每周在内部进行分享读书会,对业界的技术研究和腾讯互娱Turing Lab从创建开始,每周在内部进行分享读书会,对业界的技术研究和应用进行讨论。在此通过公众号形式把相关有趣内容也推送给对新技术和业界趋势感兴趣的朋友。 和大量的所谓技术公众号不同,尽管以AI为重心,但我们的分享不局限于AI论文,而是涉猎所有前沿技术领域,和自动化流程、数据处理、人工智能、架构设计相关的有趣内容均会分享,希望各位在周末闲暇时有空阅读了解。 分享人:王洁梅 腾讯互娱 工程师 | 编辑: 艾
从这段 css 可以看出,class="num"的标签,指定了字体库地址,猜测大概率是使用了所谓的字体加密。为了验证猜想,我们需要看下研究这个字体文件
在 Google I/O 大会上,谷歌公布了最新的机器学习算法——AutoML,随即,Quoc Le 与 Barret Aoph 大神在 Google Research Blog 上发布了一篇名为《采用机器学习探索神经网络架构》的文章。AI科技评论进行了编译,并做了不改动原意的编辑和修改。 「在谷歌团队,我们成功地将深度学习模型应用于非常多的领域,从图像识别、语音识别到机器翻译等等。自然,这些工作离不开一整支工程师与科学家团队的努力。人工设计机器学习模型的过程实际上绝非坦途,因为所有可能组合模型背后的搜
人工智能技术发展到现在已经很强大,AlphaGo已经把众多围棋世界冠军踩在脚下,让大家心生恐惧,就算在图像识别这件小事上,也比人类更好更快,然而,科学家认为这还远远不够,对于AI的发展来说,理解视频中的动态行为是接下来的关键发展方向。 为什么要理解视频? 据统计,目前视频占互联网流量的90%,它极大地推动了全球数据总量的高速增长,未来十年内,全球数据量将增长50倍,其中视频占最高比例。按照国家发改委的规划,到2020年,视频将全部高清化、连网化,那么视频所需占用的存储空间是巨大的,所以对于挖掘视频内容
Yann LeCun,生于1960年,是一位机器学习、计算机视觉、机器人、计算神经科学领域的计算机科学家。他被大家所熟知的是在非光学字符识别和利用卷积神经网络(CNN)实现计算视觉方面的工作,是CNN之父。他也是DjVu图像压缩技术的主要创造者之一。他与Léon Bottou.共同开发了Lush编程语言。
VGG(2014)网络出自paper《Very Deep Convolutional Networks for Large-Scale Image Recognition》,为ILSVRC2014 localization冠军和classification亚军方法(冠军为GoogLeNet),首次提交arXiv时间为2014年9月,后发表在ICLR2015,截止20191011引用量达27612。因为出自牛津大学Visual Geometry Group,所以网络被命名为VGG,根据层数不同,又分为VGG16、VGG19等。
AI 在一般性用途方面稳步迈进,比如虚拟助手,但AI有着更微妙的用途,对如今社会产生更本质的影响,比如对于残障患者。 这一点上,微软的Office软件将会迎来新功能,使用了众多如图像识别、文字转语音等AI新技术。 在PPT办公软件当中,新添加了很多标签为“accessible"的模版,这些模版配置的字体和颜色更适用于视力低下和色盲人群,另外里面有“Alt-text”功能。首先,这个功能可以将幻灯片中的图表,用音频描述出来,照顾到视力不佳的人群;另外,如果是一张照片,“Alt-text”也能自动添加文字描述。
2018年3月27日腾讯云云+社区联合腾讯云智能图像团队共同在客户群举办了腾讯云OCR文字识别——智能图像分享活动,活动举办期间用户耐心听分享嘉宾的介绍,并提出了相关的问题,智能图像团队的科学家和工程师也耐心解答可用户的疑问。以下就是活动分享的全部内容。
导读:一个成功的数据产品有三个核心层,包含一个中心(应用层)与两个基本点(数据层和算法层)。其中应用层最重要,就是说给谁创造价值,也可以叫业务目标。判断一个数据产品的好坏在于它有没有真正给受众创造价值,创造多大价值。
OCR全称Optical Character Recognition,即光学字符识别,最早在1929年被德国科学家Tausheck提出,定义为将印刷体的字符从纸质文档中识别出来。现在的OCR,狭义上指对输入扫描文档图像进行分析处理,识别出图像中文本信息。而随着OCR技术的日益发展,人们已不再仅仅满足于文档或书本上的文本,开始将目标转移到现实世界场景中的文本,这被称为场景文本识别(Scene Text Recognition,STR)。
卷积神经网络(Constitutional Neural Networks, CNN)是在多层神经网络的基础上发展起来的针对图像分类和识别而特别设计的一种深度学习方法。先回顾一下多层神经网络:
领取专属 10元无门槛券
手把手带您无忧上云