首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于深度学习的图像增强综述

    图像增强的定义非常广泛,一般来说,图像增强是有目的地强调图像的整体或局部特性,例如改善图像的颜色、亮度和对比度等,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,提高图像的视觉效果。传统的图像增强已经被研究了很长时间,现有的方法可大致分为三类,空域方法是直接对像素值进行处理,如直方图均衡,伽马变换;频域方法是在某种变换域内操作,如小波变换;混合域方法是结合空域和频域的一些方法。传统的方法一般比较简单且速度比较快,但是没有考虑到图像中的上下文信息等,所以取得效果不是很好。 近年来,卷积神经网络在很多低层次的计算机视觉任务中取得了巨大突破,包括图像超分辨、去模糊、去雾、去噪、图像增强等。对比于传统方法,基于CNN的一些方法极大地改善了图像增强的质量。现有的方法大多是有监督的学习,对于一张原始图像和一张目标图像,学习它们之间的映射关系,来得到增强后的图像。但是这样的数据集比较少,很多都是人为调整的,因此需要自监督或弱监督的方法来解决这一问题。本文介绍了近年来比较经典的图像增强模型,并分析其优缺点。

    06

    Deep Retinex Decomposition for Low-Light Enhancement

    Retinex模型是微光图像增强的有效工具。假设观测图像可以分解为反射率和光照。大多数现有的基于retinx的方法都为这种高度病态分解精心设计了手工制作的约束条件和参数,当应用于各种场景时,可能会受到模型容量的限制。在本文中,我们收集了一个包含低/正常光图像对的低光数据集(LOL),并提出了在该数据集上学习的深度视网膜网络,包括用于分解的解分解网和用于光照调整的增强网。在解压网络的训练过程中,分解的反射率和光照没有ground truth。该网络仅在关键约束条件下学习,包括成对低/正常光图像共享的一致反射率和光照的平滑度。在分解的基础上,通过增强网络对光照进行亮度增强,联合去噪时对反射率进行去噪操作。Retinex-Net是端到端可训练的,因此学习的分解本质上有利于亮度调整。大量实验表明,该方法不仅在弱光增强方面具有良好的视觉效果,而且能很好地表征图像的分解。

    02

    谷歌研究:通过自动增强来提高深度学习性能

    计算机视觉深度学习的成功可部分归功于大量标记训练数据,随着质量提高,多样性和训练数据量,模型的性能通常会提高。但是,收集足够的高质量数据来训练模型以实现良好性能通常是非常困难的。解决这个问题的一种方法是将图像的对称性硬编码到神经网络体系结构中,这样它们就能更好地运行,或者让专家手动设计数据增强方法,比如旋转和翻转,这些方法通常用于训练表现良好的视觉模型。然而最近人们很少关注如何通过机器学习来自动增加现有的数据。在我们的自动化设计的结果中,我们设计了神经网络体系结构和优化器来取代以前的系统组件,我们是否也可以自动化数据扩增的过程?

    04

    介绍几篇最近看的低光照图像增强的论文

    图像在较低的光照下拍摄往往存在亮度低、对比度差等问题,从而影响一些high-level任务,因此低光照图像增强的研究具有很强的现实意义。现有的方法主要分为两类,基于直方图均衡的方法和基于Retinex理论的方法。基于HE的方法主要是扩大图像的动态范围从而增强整幅图像的对比度,是一个全局的过程,没有考虑亮度的变换,可能会导致过度增强。基于Retinex的方法的关键是估计illumination map,是手工调整的,依赖于参数选择,此外这种方法不考虑去除噪声,甚至会放大噪声。现有的基于深度学习的方法没有显式地包含去噪过程甚至依赖于传统的去噪方法,取得的效果不是很好。

    04

    Semi-supervised learning-based satellite remote sensing object detection method for power transmissi

    众所周知,随着电网的日益复杂,传统的输电塔人工测量方法已经失效,无法满足安全稳定运行的要求。尽管卫星遥感技术的发展为输电塔的高效稳定测量提供了新的前景,但仍有许多问题需要解决。由于恶劣的气候和成像设备的限制,遥感图像中的一些输电塔目标是模糊的,这使得生成数据集和实现高精度输电塔目标检测变得极其困难。为了进一步提高发射塔的检测精度,首次将基于暗通道先验的图像增强算法应用于遥感图像,提高了图像的可解释性。然后,考虑到增强图像中仍有一些传输塔无法手动标记,采用了一种基于伪标记的半监督学习方法来最大限度地利用现有数据。基于这一高质量的数据集,利用移动倒瓶颈卷积和可变形卷积构建了一个传输塔卫星遥感目标检测模型。最后,根据我国某地区的卫星遥感图像数据集进行了烧蚀和对比实验。实验结果表明,图像增强和半监督学习方法都能提高检测精度,与现有主流模型相比,该方法性能更好。

    01

    NanoNets:数据有限如何应用深度学习?

    我觉得人工智能就像是去建造一艘火箭飞船。你需要一个巨大的引擎和许多燃料。如果你有了一个大引擎,但燃料不够,那么肯定不能把火箭送上轨道;如果你有一个小引擎,但燃料充足,那么说不定根本就无法成功起飞。所以,构建火箭船,你必须要一个巨大的引擎和许多燃料。 深度学习(创建人工智能的关键流程之一)也是同样的道理,火箭引擎就是深度学习模型,而燃料就是海量数据,这样我们的算法才能应用上。——吴恩达 使用深度学习解决问题的一个常见障碍是训练模型所需的数据量。对大数据的需求是因为模型中有大量参数需要学习。 以下是几个例子展

    06
    领券