为了缓解上述问题,有研究者提出了一种简单而高效的方法,称为保持增强(KeepAugment),以提高增强图像的保真度。其主要思想是首先使用显著性map来检测原始图像上的重要区域,然后在增强过程中保留这些信息区域。这种信息保护策略使我们能够生成更忠实的训练示例。
低照度图像增强只是对在低环境光环境下拍摄的图像进行增强,以提高图像视觉清晰度,如下图所示:
数据增强(DA)是训练最先进的深度学习系统的必要技术。在今天分享中,实证地表明数据增强可能会引入噪声增强的例子,从而在推理过程中损害非增强数据的性能。
欢迎关注“ 计算机视觉研究院 ” 计算机视觉研究院专栏 作者:Edison_G 数据增强(DA)是训练最先进的深度学习系统的必要技术。在今天分享中,实证地表明数据增强可能会引入噪声增强的例子,从而在推理过程中损害非增强数据的性能。 长按扫描二维码关注我们 一、前言&简要 为了缓解上述问题,有研究者提出了一种简单而高效的方法,称为保持增强(KeepAugment),以提高增强图像的保真度。其主要思想是首先使用显著性map来检测原始图像上的重要区域,然后在增强过程中保留这些信息区域。这种信息保护策略使我
这篇博客主要介绍之前看过的一些图像增强的论文,针对普通的图像,比如手机拍摄的那种,比低光照图像增强任务更简单。
随着机器学习应用的广泛发展,越来越多的任务需要大量高质量的数据来训练模型。然而,获取足够多的真实数据并不总是容易的,而且可能会导致过拟合问题。在这种情况下,数据增强技术应运而生,它通过对已有数据进行变换和扩充,以提高模型的泛化能力和性能。本文将介绍数据增强的原理、常用技术以及代码示例,帮助读者理解如何有效地利用数据增强提高机器学习性能。
Python数据增强是一种用于提高机器学习模型性能的技术,通过在原始数据集上进行一些变换操作来创建新的数据,扩大数据集规模,从而提升模型的泛化能力。本文将介绍Python数据增强的概念、意义、常用方法以及在具体案例中的应用,并通过一个具体案例展示数据增强在图像分类任务中的应用。
新智元编译 来源:Google Research 作者:Ekin Dogus Cubuk & Barret Zoph 编辑:闻菲、克雷格 【新智元导读】谷歌研究人员最新提出了一种自动数据增强方法,
这篇文章是对深度学习数据增强技术的全面回顾,具体到图像领域。这是《在有限的数据下如何使用深度学习》的第2部分。
论文链接:http://openaccess.thecvf.com/content_cvpr_2018/papers/Sharma_Classification-Driven_Dynamic_Image_CVPR_2018_paper.pdf
来源:计算机视觉与机器学习作者丨木瓜子@知乎 链接丨https://zhuanlan.zhihu.com/p/82352961本文约7900字,建议阅读10+分钟文章介绍了近年来比较经典的图像增强模型,并分析其优缺点。 这篇博客主要介绍之前看过的一些图像增强的论文,针对普通的图像,比如手机拍摄的那种,比低光照图像增强任务更简单。 介绍 图像增强的定义非常广泛,一般来说,图像增强是有目的地强调图像的整体或局部特性,例如改善图像的颜色、亮度和对比度等,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图
图像增强的定义非常广泛,一般来说,图像增强是有目的地强调图像的整体或局部特性,例如改善图像的颜色、亮度和对比度等,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,提高图像的视觉效果。传统的图像增强已经被研究了很长时间,现有的方法可大致分为三类,空域方法是直接对像素值进行处理,如直方图均衡,伽马变换;频域方法是在某种变换域内操作,如小波变换;混合域方法是结合空域和频域的一些方法。传统的方法一般比较简单且速度比较快,但是没有考虑到图像中的上下文信息等,所以取得效果不是很好。 近年来,卷积神经网络在很多低层次的计算机视觉任务中取得了巨大突破,包括图像超分辨、去模糊、去雾、去噪、图像增强等。对比于传统方法,基于CNN的一些方法极大地改善了图像增强的质量。现有的方法大多是有监督的学习,对于一张原始图像和一张目标图像,学习它们之间的映射关系,来得到增强后的图像。但是这样的数据集比较少,很多都是人为调整的,因此需要自监督或弱监督的方法来解决这一问题。本文介绍了近年来比较经典的图像增强模型,并分析其优缺点。
如何凭借“数据增强”技术获得吴恩达首届 Data-centric AI 竞赛的最佳创新奖?
众所周知,深度学习算法已经占领很多计算机视觉任务的制高点,在图像识别等任务上的精度已然超过了人类的平均水平。然而,绝大多数深度学习算法只有在高质量的图像上才能取得高性能。实际图像采集过程中,存在各种降质因素,导致图像质量和视觉效果下降,深度学习算法的性能也随之降低。
深度卷积神经网络(CNNs)在图像处理中取得了显著的效果。然而,他们的高表达能力有过度适应的风险。因此,提出了在丰富数据集的同时防止过度拟合的数据增强技术。最新的CNN体系结构具有更多的参数,使得传统的数据增强技术显得不足。
大家好,这是专栏《计算摄影》的第四篇文章,这一个专栏来自于计算机科学与摄影艺术的交叉学科。今天我们讨论的问题是如何学会做图像增强。
吴恩达(英文名 Andrew Ng,是人工智能和机器学习领域国际上最权威的学者之一)在今年 6 月的时候宣布首届以数据为中心的人工智能(Data-centric AI)竞赛即将开赛,参赛“作品”的提交日期截止到9月初。10月初,吴恩达在其个人社交平台Twitter上向我们宣布了此次竞赛的获奖者,随后,也在其个人微信公众号上向我们简要介绍了竞赛的参与情况。
2018 年,谷歌大脑的研究者在 arXiv 上发表论文,提出一种自动搜索合适数据增强策略的方法 AutoAugment。该方法创建一个数据增强策略的搜索空间,利用搜索算法选取适合特定数据集的数据增强策略,从而在 ImageNet、CIFAR 等分类任务上取得了极好的表现。
Retinex模型是微光图像增强的有效工具。假设观测图像可以分解为反射率和光照。大多数现有的基于retinx的方法都为这种高度病态分解精心设计了手工制作的约束条件和参数,当应用于各种场景时,可能会受到模型容量的限制。在本文中,我们收集了一个包含低/正常光图像对的低光数据集(LOL),并提出了在该数据集上学习的深度视网膜网络,包括用于分解的解分解网和用于光照调整的增强网。在解压网络的训练过程中,分解的反射率和光照没有ground truth。该网络仅在关键约束条件下学习,包括成对低/正常光图像共享的一致反射率和光照的平滑度。在分解的基础上,通过增强网络对光照进行亮度增强,联合去噪时对反射率进行去噪操作。Retinex-Net是端到端可训练的,因此学习的分解本质上有利于亮度调整。大量实验表明,该方法不仅在弱光增强方面具有良好的视觉效果,而且能很好地表征图像的分解。
计算机视觉深度学习的成功可部分归功于大量标记训练数据,随着质量提高,多样性和训练数据量,模型的性能通常会提高。但是,收集足够的高质量数据来训练模型以实现良好性能通常是非常困难的。解决这个问题的一种方法是将图像的对称性硬编码到神经网络体系结构中,这样它们就能更好地运行,或者让专家手动设计数据增强方法,比如旋转和翻转,这些方法通常用于训练表现良好的视觉模型。然而最近人们很少关注如何通过机器学习来自动增加现有的数据。在我们的自动化设计的结果中,我们设计了神经网络体系结构和优化器来取代以前的系统组件,我们是否也可以自动化数据扩增的过程?
在过去几年从事多个计算机视觉和深度学习项目之后,我在这个博客中收集了关于如何处理图像数据的想法。对数据进行预处理基本上要比直接将其输入深度学习模型更好。有时,甚至可能不需要深度学习模型,经过一些处理后一个简单的分类器可能就足够了。
他们提出基于深度学习优化光照的暗光下的图像增强模型,用端到端网络增强曝光不足的照片。
摘要 基于深度学习的方法在图像恢复和增强方面取得了显著的成功,但在缺乏成对训练数据的情况下,它们是否仍然具有竞争力?作为一个例子,本文探讨了弱光图像增强问题,在实践中,它是非常具有挑战性的同时采取一个
像Google和Microsoft这样的大公司在图像识别方面已经超越了人类基准[1,2]。平均而言,人类大约有5%的时间在图像识别任务上犯了错误。截至2015年,微软的图像识别软件的错误率达到4.94%,与此同时,谷歌宣布其软件的错误率降低到4.8%[3]
本文针对低照度视频序列,为了增强视频图像的主观视觉质量,设计了正则化的最优化框架(其中包含:亮度增强代价函数,对比度增强代价函数和亮度一致性代价函数),并给出满足实时应用需求的求解方式。该算法具有较低的计算复杂度和极强的鲁棒性,实验证明其大量测试和线上的视频图像的增强效果中没有过度增强和失真增强的差质量样例。相关技术全部为组内自研,已获中国专利授权一项且中稿国际视频编码领域的重要会议文章一篇。
大家好,我是阿潘,今天和大家分享 ICCV 2021 的一份非常惊艳的工作, DeepSim
当我们没有大量不同的训练数据时,我们该怎么办?这是在TensorFlow中使用数据增强在模型训练期间执行内存中图像转换以帮助克服此数据障碍的快速介绍。
验证是否过拟合的方法:画出loss曲线,如果训练集loss持续减小但是验证集loss增大,就说明是过拟合了。
图像在较低的光照下拍摄往往存在亮度低、对比度差等问题,从而影响一些high-level任务,因此低光照图像增强的研究具有很强的现实意义。现有的方法主要分为两类,基于直方图均衡的方法和基于Retinex理论的方法。基于HE的方法主要是扩大图像的动态范围从而增强整幅图像的对比度,是一个全局的过程,没有考虑亮度的变换,可能会导致过度增强。基于Retinex的方法的关键是估计illumination map,是手工调整的,依赖于参数选择,此外这种方法不考虑去除噪声,甚至会放大噪声。现有的基于深度学习的方法没有显式地包含去噪过程甚至依赖于传统的去噪方法,取得的效果不是很好。
众所周知,随着电网的日益复杂,传统的输电塔人工测量方法已经失效,无法满足安全稳定运行的要求。尽管卫星遥感技术的发展为输电塔的高效稳定测量提供了新的前景,但仍有许多问题需要解决。由于恶劣的气候和成像设备的限制,遥感图像中的一些输电塔目标是模糊的,这使得生成数据集和实现高精度输电塔目标检测变得极其困难。为了进一步提高发射塔的检测精度,首次将基于暗通道先验的图像增强算法应用于遥感图像,提高了图像的可解释性。然后,考虑到增强图像中仍有一些传输塔无法手动标记,采用了一种基于伪标记的半监督学习方法来最大限度地利用现有数据。基于这一高质量的数据集,利用移动倒瓶颈卷积和可变形卷积构建了一个传输塔卫星遥感目标检测模型。最后,根据我国某地区的卫星遥感图像数据集进行了烧蚀和对比实验。实验结果表明,图像增强和半监督学习方法都能提高检测精度,与现有主流模型相比,该方法性能更好。
目前的目标检测模型在许多基准数据集上都取得了良好的效果,在夜晚或者黑暗条件下检测目标仍然是一个巨大的挑战。
【磐创AI导读】:本文讲解了图像数据增强实战。想要获取更多的机器学习、深度学习资源,欢迎大家点击上方蓝字关注我们的公众号:磐创AI。
近年来,卷积神经网络(CNN)的出现推动了目标检测领域的发展。大量的检测器被提出,针对基准数据集的性能也取得了令人满意的结果。然而,大多数现有的检测器都是在高质量图像和正常条件下进行研究的。而在实际环境中,往往存在许多恶劣的光照条件,如夜晚、暗光和曝光不足,导致图像质量下降,从而影响了检测器的性能。视觉感知模型使得自动系统能够理解环境并为后续任务(如轨迹规划)奠定基础,这需要一个稳健的目标检测或语义分割模型。
视频通话是微信的基础功能之一,在实际应用中受光照条件及视频采集设备能力所限,视频发暗是影响主观体验的重要因素。我们尝试改进这个问题,欢迎留言交流:) 该项工作的主要成果发表在ISCAS 2017国际会议上。("Low-Lighting Video Enhancement Using Constrained Spatial-Temporal Model for Real-Time Mobile Communication", ISCAS, pp:595-598, Baltimore, MD, USA, 201
图像数据准备对神经网络与卷积神经网络模型训练有重要影响,当样本空间不够或者样本数量不足的时候会严重影响训练或者导致训练出来的模型泛化程度不够,识别率与准确率不高!本文将会带你学会如何对已有的图像数据进行数据增强,获取样本的多样性与数据的多样性从而为训练模型打下良好基础。通读全文你将get到如何几个技能:
该文是香港理工大学张磊老师及其学生在图像增强领域的又一颠覆性成果。它将深度学习技术与传统3DLUT图像增强技术结合,得到了一种更灵活、更高效的图像增强技术。所提方法能够以1.66ms的速度对4K分辨率图像进行增强(硬件平台:Titan RTX GPU)。
数字图像,又称为数码图像或数位图像,是二维图像用有限数字数值像素的表示。数字图像是由模拟图像数字化得到的、以像素为基本元素的、可以用数字计算机或数字电路存储和处理的图像。
图像增强是图像模式识别中非常重要的图像预处理过程。图像增强的目的是通过对图像中的信息进行处理,使得有利于模式识别的信息得到增强,不利于模式识别的信息被抑制,扩大图像中不同物体特征之间的差别,为图像的信息提取及其识别奠定良好的基础。
今天就来一招搞定数据增强(data_Augmentation),让你在机器学习/深度学习图像处理的路上,从此不再为数据不够而发愁。且来看图片从250张>>>>任意张的华丽增强,每一张都与众不同。
生成对抗网络(Generative adversarial networks,简称GANs)由Ian Goodfellow于2014年推出,近年来成为机器学习研究中非常活跃的话题。GAN是一种无监督生成模型,它隐含地学习底层分布。在GAN框架中,学习过程是两个网络之间的极大极小博弈,一个生成器,生成给定随机噪声向量的合成数据,一个鉴别器,区分真实数据和生成器的合成数据。
大语言模型中的进展激发了人们对计算机视觉基础模型开发的极大关注。其中,Segment Anything Model(SAM)是一种专门为图像分割任务和后续下游应用设计的新型交互式模型。
今天给大家介绍的是来自爱丁堡大学的Antreas Antoniou等人在arXiv上发表的文章”DATA AUGMENTATION GENERATIVEADVERSARIAL NETWORKS”。该模型基于图像条件生成对抗网络,从源域获取数据并学习获取任何数据项并将其生成为生成其他类内数据项。由于这个生成过程不依赖于类本身,它可以应用于新颖的不可见的数据类。
来源:DeepHub IMBA本文约4000字,建议阅读10+分钟本文与你讨论一种新的半监督,多任务医学成像方法。 在本文中,我将讨论一种新的半监督,多任务医学成像方法,称为Multimix,Ayana Haque(ME),Abdullah-Al-Zubaer Imran,Adam Wang、Demetri Terzopoulos。该论文被ISBI 2021收录,并于4月的会议上发表。 MultiMix通过采用基于置信的增强策略和新型桥模块来执行联合半监督分类和分割,该模块还为多任务提供了可解释性。在完全监
我觉得人工智能就像是去建造一艘火箭飞船。你需要一个巨大的引擎和许多燃料。如果你有了一个大引擎,但燃料不够,那么肯定不能把火箭送上轨道;如果你有一个小引擎,但燃料充足,那么说不定根本就无法成功起飞。所以,构建火箭船,你必须要一个巨大的引擎和许多燃料。 深度学习(创建人工智能的关键流程之一)也是同样的道理,火箭引擎就是深度学习模型,而燃料就是海量数据,这样我们的算法才能应用上。——吴恩达 使用深度学习解决问题的一个常见障碍是训练模型所需的数据量。对大数据的需求是因为模型中有大量参数需要学习。 以下是几个例子展
领取专属 10元无门槛券
手把手带您无忧上云