首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

梯度直方图(HOG)用于图像多分类和图像推荐

在本文中,我们将研究在图像分类和图像推荐中使用定向梯度直方图的方法。 数据集 ?...目的是将数据集用于图像分类和推荐。让我们先看看数据分布! ? 每个列的惟一值。...对于每个性别,masterCategory、subCategory、gender、usage和season列使用KNN分类器进行图像分类,然后使用K个最近邻数据进行图像推荐 这个设计的目标是提出一个解决方案...然后构建推荐引擎,根据用户选择的测试图像,给出最匹配的n幅图像。 ? ? ? ?...在一些情况下,图像被错误地标记,或者图像有多个对象但被标记在一个类中,这会影响我们的模型。下一步是确定错误分类的根本原因,并制作一个更好的分类和推荐引擎。

1.3K30

推荐 | Pair,医学图像标注神器

因此,本文为大家推荐一款一站式医学图像标注软件Pair,解决所有“不可以”。 Pair致力于成为最优秀、最专业、最懂医生的国产医学影像标注软件。...繁琐枯燥的图像标注工作常常让人倍感压力,尤其是医学影像标注领域,标注需求差异巨大、标注场景复杂多变,而标注者却面临着没有一款可以通用的标注软件的尴尬情形。...我们的pair作为一款一站式医学图像标注软件,与其他标注软件相比,有以下八大亮点: 多项目通用。 兼容全部数据模态和格式。 支持多种标注类型。 AI智能标注。 支持大规模的标注任务。...多项目通用 你还在为2D图像需要用LabelMe,3D图像需要使用itk-SNAP、3D Slicer频繁切换软件而烦恼吗?...丰富的AI功能,包括分割、点定位、实例分割和检测 大规模数据的标注 Pair具备优异的工作流,支持上千张图像和视频的同时导入。

1.7K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    推荐 | github 项目推荐:用 edge-connect 进行图像修复

    AI 科技评论按:用对抗性边缘学习修复生成图像是一种新的图像修复方法,它可以更好地复制填充区域,它的细节部分展现了开发者对艺术工作者工作方式的理解:线条优先,颜色次之。...文中提出了一种 2 阶对抗式边缘连接模型,该模型由一个边缘生成器和一个图像完成网络组成。边缘生成器先描绘出图像缺失区域(规则和不规则)的边缘,图像完成网络先验使用描绘出的边缘填充缺失区域。...(c)拟用方法的图像修复结果。...在每种情况下,都需要提供一个输入图像(带掩膜的图像)和一个灰度掩膜文件。请确保掩膜文件覆盖输入图像中的整个掩膜区域。.../examples/places2/mask 对应的掩膜图像,并将结果保存在./checkpoints/results 目录中。

    2K20

    推荐5最佳免费图像注释工具

    图像标注是有监督机器学习中的数据标注技术之一,要做图像注释,必须需要一个专用的注释工具,现在有很多图像注释工具。...在本文中,我们将根据在项目中使用它们以及我们寻找最适合使用的工具时的个人经验,为你们推荐五个最好的免费图像注释工具。...为了方便你们注释图像,可以在VoTT中探索许多功能,缺点是VoTT中的注释类型仅限于矩形和多边形。...labelimg labelimg是我在图像标记方面的第一个工具。这是我第一次接触到图像标签,因为我以前的项目或工作是为语音识别注释音频。...当你们有很多图像需要注释时,可能会忘记对其中一些图像进行注释。这就是为什么“文件列表”很方便,因为它不仅列出了你们的文件,而且还为已经注释的每个文件提供了一个复选标记。

    1.6K20

    二值图像分析之轮廓分析

    图像的二值化 在先前的文章二值图像分析:案例实战(文本分离+硬币计数)中已经介绍过,什么是图像的二值化以及二值化的作用。 这次,我们借助cv4j来实现简单的基于内容的图像分析。...轮廓分析(Contour Analysis) 轮廓(Contours),指的是有相同颜色或者密度,连接所有连续点的一条曲线。检测轮廓的工作对形状分析和物体检测与识别都非常有用。...轮廓分析一.jpeg 第三步,进行轮廓分析。...矩是描述图像特征的算子,主要应用于图像检索和识别 、图像匹配 、图像重建 、数字压缩 、数字水印及运动图像序列分析等。 一阶矩和零阶矩用来计算某个形状的重心。 ?...该系列先前的文章: 基于边缘保留滤波实现人脸磨皮的算法 二值图像分析:案例实战(文本分离+硬币计数) Java实现高斯模糊和图像的空间卷积 Java实现图片滤镜的高级玩法 Java实现图片的滤镜效果

    1.7K30

    细粒度图像分析_图像分类研究现状

    细粒度图像分析任务相对通用图像(General/Generic Images)任务的区别和难点在于其图像所属类别的粒度更为精细。...细粒度图像分类的挑战 由于分类的粒度很小,细粒度图像分类非常困难,在某些类别上甚至专家都难以区分。...将不同的部位图像进行弯曲,并且使用不同的DCNN(AlexNet)提取其特征。最后拼接各个部位及整张图像的特征训练分类器。 最终,还是将不同级别特征级联作为整张图像的表示。...使用FCN得到conv5中M个关键点的位置之后,将定位结果输入到分类网络,使用两级架构分析图像物体级及部件级的特征。 部件级网络首先通过共享层提取特征,之后分别计算关键点周围的部件特征。...四、高阶特征编码 双线性汇合(bilinear pooling)在细粒度图像分析及其他领域的进展综述 【AAAI2020系列解读 01】新角度看双线性池化,冗余、突发性问题本质源于哪里?

    1.1K20

    图像分析及简单算法

    所以图像分析实际上是对这些数据的分析及计算” 01 — 图片:3维数据矩阵 图1是一张彩色图片。读取该图片的数据后,会得到三个20✖️30的矩阵(如图2,图3,图4)。 ?...图7 图像分析,是对R,G,B矩阵某一行、某一列或某一区域数据的分析。 02 — 算例:停车位边界判断 图8是一张停车位的照片。...图17 03 — 算例总结 以上仅是个图像识别的简单算例,计算思路及步骤如下: 1)寻找RGB矩阵中图像特征明显的矩阵,或是处理灰度矩阵:Z=0.299R+0.587G+0.114B, (计算后需要对Z...2)对矩阵的某行,某列,或某区域进行信号分析。 3)通过各种计算得到特征位置或特征数值。 04 — 应用展望 图像识别已被广泛使用,本篇只是简单介绍一下最简单的算例及原理,真正的应用远比本例要复杂。...图片特性稳定,则程序简单,计算速度较快;图像特性变化大,则要求程序具有更强的容错能力,程序就越复杂,计算越慢。 目前比较流行的机器学习等算法在图像识别中已广泛应用,使用者不需要对图像特征进行深入了解。

    1.2K10

    AI图像行为分析算法

    AI图像行为分析算法通过python+opencv深度学习框架对现场操作行为进行全程实时分析,AI图像行为分析算法通过人工智能视觉能够准确判断出现场人员的作业行为是否符合SOP流程规定,并对违规操作行为进行自动抓拍告警...AI图像行为分析算法轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。...图片AI图像行为分析算法Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。...AI图像行为分析算法使程序员能够用更少的代码行表达思想,而不会降低可读性。与C / C++等语言相比,Python速度较慢。...这也使得AI图像行为分析算法与使用Numpy的其他库(如SciPy和Matplotlib)集成更容易。

    32340

    OpenCV 图像分析之 —— Canny

    Canny 是1986年提出的图像边缘检测经典算法,本文记录相关内容与 OpenCV 实现。 简介 通常情况下边缘检测的目的是在保留原有图像属性的情况下,显著减少图像的数据规模。...图像中的任意边缘应该只被标记一次,同时图像噪声不应产生伪边缘。...任何边缘检测算法都不可能在未经处理的原始数据上很好地工作,所以第一步是对原始数据与高斯 mask 作卷积,得到的图像与原始图像相比有些轻微的模糊(blurred)。...找寻图像的强度梯度(intensity gradients) 图像的边缘可以指向不同方向,因此经典Canny算法用了四个梯度算子来分别计算水平,垂直和对角线方向的梯度。...edges 输出边缘图; 单通道8位图像,与图像大小相同。

    2.1K20

    OpenCV 图像分析之 —— 分割

    图像被“填满”时,所有有标记的区域就被分割开了。这样一来,连通到标记点的盆地就属于这个标记点了,然后就把相应的标记区域从图像中分割出来。...分水岭算法然后通过让标记区域“获取”梯度图中与片段连接的边界确定的峡谷来分割图像。 cv2.watershed 使用分水岭算法执行基于标记的图像分割。...官方文档 在将图像传递给函数之前,您必须用正 (>0) 索引粗略地勾勒出图像标记中所需的区域。因此,每个区域都表示为一个或多个具有像素值 1、2、3 等的连通分量。...函数使用 cv2.watershed( image, # 输入 uint8 三通道图像 markers # 输入/输出标记的 32 位单通道图像。...dst[, # 与源图像格式和大小相同的目标图像。 maxLevel[, # 用于分割的金字塔的最大级别。

    2.5K10

    好书推荐 — Kubernetes安全分析

    漏洞(CVE-2019-5736),关于容器逃逸漏洞,绿盟科技研究通讯曾发布过相关文章《云原生攻防研究 —容器逃逸技术概览》,《容器逃逸成真:从 CTF解题到CVE-2019-5736漏洞挖掘分析...proxy · Webhook token authentication 通过以上的认证策略我们大致可以看出「静态密码或Token文件」的方式在生产环境由于密码需要频繁变化不易维护故不推荐...较为推荐的是哪一种?...Secret构建至镜像中 · 利用Kubernetes环境变量 · 挂载主机文件系统 第一种方式由于写入镜像的内容可被任意查询故不安全,另外在更换密码时需要重新构建镜像不易维护,故不推荐...; 第二种方式由于可以通过Kubectl或docker命令行工具查询密码及密钥的内容,安全风险较高,故不推荐; 第三种方式较为推荐,因为Kubernetes支持通过挂载目录将Secret传递到Pod中,

    2.3K30

    推荐系统实用分析技巧

    来自 | 知乎 作者 | 纳米酱 链接 | https://zhuanlan.zhihu.com/p/188228577 编辑 | 机器学习与推荐算法公众号 这篇文章主要讨论推荐系统的分析技巧,杜绝无脑调参...本来我想取一个高大上的题目:推荐系统0-1高速增长打法,这种互联网style强烈的题目,让我感觉我的格局大,ego也很大,所以算了,写一份实用分析手册,让我格局很小,ego也很小,比较符合我当前这种水平...要分析系统的指标瓶颈是不是卡在rank缺特征上,就需要从各种角度去分析,常见的分析方案是考察带条件的copc。...分析办法:把rank分数分成若干区间,每个区间统计真实的ctr,更近一步,可以拆分成多个桶,比如按照某个特征拆分成 A,B两组,单独统计每组的真实ctr。 ?

    1.2K10

    【工具推荐图像界的魔术师 ImageMagick

    批量缩放大小 在合并图像之前,我需要对图片进行缩放。...它可以支持以下的特性[features]: 格式转换:从一种格式转换成图像到另一个(例如 PNG 转 JPEG) 变换:缩放,旋转,裁剪,翻转或修剪图像 透明度:使图像的部分变为透明 附加:添加形状或一帧到图像...装饰:添加边框或帧图像 特效:模糊,锐化,阈值,或色彩图像动画:创建一个从GIF动画图像组序列 文本及评论:插入描述或艺术图像中的文字 图像识别:描述的格式和图像性能 综合:重叠了一个又一个的图像 蒙太奇...:并列图像画布上的图像缩略图 电影支持:读写图像的共同使用的数字电影工作方式 图像计算器:应用数学表达式的图像图像通道 离散傅立叶变换:实现正向和反向的DFT。...高动态范围图像:准确地表现了从最明亮的阳光直射到最深最黑暗的阴影找到真正的幕后广泛的强度水平 加密或解密图片:转换成不懂乱码,然后再返回普通图像 虚拟像素支持:方便以外区域的图像像素 大图像支持:读,过程

    2.3K60

    二值图像分析案例精选

    点击上方↑↑↑“OpenCV学堂”关注我 面向CV技术爱好者征稿,点击底部【合作交流】即可 最近一直有人在知识星球上向我提问很多二值图像分析相关的问题,特别选择了两个典型的轮廓分析问题。...进行分析与编码实现与演示,废话不多说,先看第一个问题。 问题一 描述如下: 想找到工具盘中间缺少的几个点,统计出可以看到的工件数目 ?...仔细分析图像发现,中间都毫无另外的有个白色很亮的圆圈,这个给了我两个思路 可以通过霍夫变换检测圆来提取到 可以通过二值图像分析来提取 + 轮廓分析来提取到这些点 得到这些轮廓点之后通过分析整个轮廓区域得到倾斜角度...代码实现是基于轮廓分析的思路,因为这个方法,用的阈值比较少,有利于算法稳定性检测。演示各部输出。二值化处理之后(形态学处理): ? 轮廓发现与校正角度之后 ? 投影分析与统计结果如下: ?...看到这个图像之后,个人觉得解决十分简单,基于最外层轮廓发现即可,无需树形结构与层次分析,集合图像形态学分析或者距离变换就可以得到,最终代码的运行结果如下: ?

    74230

    OpenCV 图像分析之 —— 积分图

    积分图是一种允许子区域快速求和的数据结构,本文记录 OpenCV 图像分析中的 积分图 相关内容。...积分图 使用积分图是数字图像处理中常用的一种方法,通常能够很大程度的加速计算过程,比如均值滤波,非局部均值滤波,以及Harr计算等。...从直观来说,一张图像就是一个矩形,这个矩形中每个像素点的积分值,就是以图像左上角像素点为左上角顶点,以该像素点为右下角顶点的矩形中包含的所有元素之和。...每种情况的结果图像图像的每个方向上都加1之后,与原始图像的大小相同。...{image}\left(x^{\prime}, y^{\prime}\right) 平方和图像 平方和图像是平方的和: $$ \operatorname{sum}_{\text {square

    1.5K10
    领券