首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas按行按遍历Dataframe几种方式

遍历数据有以下三种方法: 简单对上面三种方法进行说明: iterrows(): 按行遍历,将DataFrame每一行迭代为(index, Series)对,可以通过row[name]对元素进行访问。...itertuples(): 按行遍历,将DataFrame每一行迭代为元祖,可以通过row[name]对元素进行访问,比iterrows()效率高。...iteritems():按遍历,将DataFrame每一迭代为(列名, Series)对,可以通过row[index]对元素进行访问。...示例数据 import pandas as pd inp = [{‘c1’:10, ‘c2’:100}, {‘c1’:11, ‘c2’:110}, {‘c1’:12, ‘c2’:123}] df =...(index) # 输出每行索引值 1 2 row[‘name’] # 对于每一行,通过列名name访问对应元素 for row in df.iterrows(): print(row[‘c1

7.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    固定表头和第一列表实现

    概述 在开发时候,我们有时候会有这样需求:由于表格内容比较多,如果横竖都出现滚动条就看不到表头了,这就要求表格表头和第一固定,并且出现双向滚动条。...实现思路 1.区域划分 如下图,将整个表格分为四个区域:1、左上区域需要单独出来,因为此区域不参与滚动;2、上部表头,需要固定在顶部并且参与横向滚动;3、左边表头,需要滚动并且参与竖向滚动;4、表格主区域...,会有横竖向滚动,控制顶部和左边表头。...2.关键点 tableth或者td里面套一个div并设置宽度,目的是为了撑开table表格,因为单独给th或者td是不起作用。...; } } } .table-title, .table-content { float: left; /*定义滚动条高宽及背景 高宽分别对应横竖滚动条尺寸

    4.9K20

    pandas DataFrame创建方法

    pandas DataFrame增删查改总结系列文章: pandas DaFrame创建方法 pandas DataFrame查询方法 pandas DataFrame行或删除方法 pandas...DataFrame修改方法 在pandas里,DataFrame是最经常用数据结构,这里总结生成和添加数据方法: ①、把其他格式数据整理到DataFrame中; ②在已有的DataFrame...pd.Index(range(3),就会生成三行一样,是因为前面的dict型变量只有一组值,如果有多个,后面的Index必须跟前面的数据组一致,否则会报错: pd.DataFrame({'id':[...关于选择,有些时候我们只需要选择dict中部分键当做DataFrame,那么我们可以使用columns参数,例如我们只选择'id','name': test_dict_df = pd.DataFrame...中删除N或者N行)(在DataFrame中查询某N或者某N行)(在DataFrame中修改数据)

    2.6K20

    pandas DataFrame运算实现

    对于单个函数去进行统计时候,坐标轴还是按照默认“columns” (axis=0, default),如果要对行“index” 需要指定(axis=1) max()、min() # 使用统计函数:0...以上这些函数可以对series和dataframe操作 这里我们按照时间从前往后来进行累计 排序 # 排序之后,进行累计求和 data = data.sort_index() 对p_change进行求和...4 自定义运算 apply(func, axis=0) func:自定义函数 axis=0:默认是,axis=1为行进行运算 定义一个对,最大值-最小值函数 data[['open', 'close...']].apply(lambda x: x.max() - x.min(), axis=0) open 22.74 close 22.85 dtype: float64 到此这篇关于pandas DataFrame...运算实现文章就介绍到这了,更多相关pandas DataFrame运算内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持ZaLou.Cn!

    1.6K41

    (六)Python:PandasDataFrame

    Series集合 创建         DataFrame与Series相比,除了可以每一个键对应许多值之外,还增加了索引(columns)这一内容,具体内容如下所示: 自动生成行索引         ...                我们可以通过一些基本方法来查看DataFrame行索引、索引和值,代码如下所示: import pandas as pd import numpy as np data...对象和行可获得Series          具体实现如下代码所示: import pandas as pd import numpy as np data = np.array([('xiaoming...,但这种方式是直接对原始数据操作,不是很安全,pandas 中可利用 drop()方法删除指定轴上数据,drop()方法返回一个新对象,不会直接修改原始数据。...对象修改和删除还有很多方法,在此不一一举,有兴趣同学可以自己去找一下 统计功能  DataFrame对象成员找最低工资和高工资人群信息          DataFrame有非常强大统计功能,它有大量函数可以使用

    3.8K20

    python中pandas库中DataFrame对行和操作使用方法示例

    pandasDataFrame时选取行或: import numpy as np import pandas as pd from pandas import Sereis, DataFrame...#利用index值进行切片,返回是**前闭后闭**DataFrame, #即末端是包含 #——————新版本pandas已舍弃该方法,用iloc代替——————— data.irow...下面是简单例子使用验证: import pandas as pd from pandas import Series, DataFrame import numpy as np data = DataFrame...d three 12 13 data.ix[data.a 5,[2,2,2]] #选择'a'中大于5所在行中第2并重复3次 Out[33]: c c c three 12 12 12 #还可以行数或跟行名列名混着用...github地址 到此这篇关于python中pandas库中DataFrame对行和操作使用方法示例文章就介绍到这了,更多相关pandasDataFrame行列操作内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持

    13.4K30

    Pandas 数据结构

    导包: import pandas as pd (1)创建一个Series:使用 Series()方法 1)传入一个列表list: 只传入一个列表不指定数据标签,那么 Series会默认使用从0开始作为数据标签...(1)创建一个 DataFrame 1)传入一个列表list: 只传入一个单一列表时,该列表值会显示成一,且行和都是从0开始默认索引。...import pandas as pd df1 = pd.DataFrame(['a','b','c']) df1 2)传入一个嵌套列表list: 当传入一个嵌套列表时,会根据嵌套列表显示成多行数据...,嵌套列表中元素个数显示成多数据。...行和都是从0开始默认索引。 df2 = pd.DataFrame([ ['a','A'],['b','B'],['c','C'] ] ) df2 列表里面嵌套列表也可以换成元组。

    1.1K30

    Pandas 查找,丢弃值唯一

    前言 数据清洗很重要,本文演示如何使用 Python Pandas 来查找和丢弃 DataFrame值唯一,简言之,就是某数值除空值外,全都是一样,比如:全0,全1,或者全部都是一样字符串如...:已支付,已支付,已支付… 这些大多形同虚设,所以当数据集很多而导致人眼难以查找时,这个方法尤为好用。...上代码前先上个坑吧,数据空值 NaN 也会被 Pandas 认为是一种 “ 值 ”,如下图: 所以只要把缺失值先丢弃,再统计该唯一值个数即可。...代码实现 数据读入 检测值唯一所有并丢弃 最后总结一下,Pandas 在数据清洗方面有非常多实用操作,很多时候我们想不到只是因为没有接触过类似的案例或者不知道怎么转换语言描述,比如 “...值唯一 ” --> “ 除了空值以外唯一值个数等于1 ” ,许多坑笔者都已经踩过了,欢迎查看我其余文章,提建议,共同进步。

    5.7K21
    领券