VNPY仿真柜台的用法快速入门可以参考这篇文章 (来自VNPY知乎官方公众号) https://zhuanlan.zhihu.com/p/166244874
去年不是撸了个量化平台嘛,自己用起来蛮舒服的,但很多用户反应,家里没有电脑,无法做到回测,起初呢也不在意,最近正好有时间,花了2天时间,让它支持了在线回测。
谢谢大家的支持!现在该公众号开通了评论留言功能,你们对每篇推文的留言与问题,可以通过【写评论】给圈主留言,圈主会及时回复您的留言。 想在市场上赚钱,必须同时具备两样能力: 研究:做出正确的能够获利的决策,也就是寻找Alpha的能力 交易:基于研究的结果和交易信号,执行相应的下单风控等操作,也就是将Alpha落实到你账户盈利上的能力 研究方面 python编程能力: python基础编程,必须掌握,不仅仅是会语法,还有各种语言细节的坑(当然比C++少很多)。对于常年使用R MATLAB SAS的研究人员来
开发策略时,如何直观地检查自己的交易逻辑是否正确?代码所实现的和自己的策略逻辑是否一致?moonnejs在「维恩的派」论坛里分享了一个可以用于回测的交互K线工具。感谢moonnejs的分享!
vnpy [1] 基于python的开源交易平台开发框架。项目的用户包括:私募基金,证券自营、资管,期货公司,高校的金融研究院系,个人投资者等,机构用户加起来至少20多家。 该项目拥有较为丰富的Py
今天给大家分享一位好朋友的六年量化程序开发历程,最后他的策略实现了很高的收益,身边有很多朋友也都是主业码农,副业量化,这种搭配是现在非常流行的,量化代码给大家放在了文章末尾,看完后希望对你有所启发与帮助~
近来忙于毕业找工作,也不知道能不能继续在量化界混了。周末比较闲,抽空研究了一下vn.py。有人说,为什么学那么多的回测平台呀。其实我个人觉得,做cta的话,两个回测平台还是要的,这样,当你的策略出现和你预计不符,而你有无法在代码逻辑层面找到问题的时候,你就可以用另外一个平台试一下,来看看到底是你的策略本身就不行,还是你的代码有着当前水平无法察觉的问题,甚至,可能回测平台本身存在一个bug。所以笔者之前学习的backtrader和pyalgotrade的目的就是这个,但是后续对于pyalgotrade没怎么用。前段时间看到vn.py和某Q开头的开源项目在网上开战,刚入门python的小朋友可能还不知道他们争论的是什么。
上篇我们统计并演算了沪深300指数历史各季度的涨跌概率和幅度,分析第四季度上涨概率66.67%和平均收益6.89%,位居首位,并结合A股财报周期解释其发生的原因,如需阅读请点击:《择时系列(2)| 指数季节效应》。
Python 的学习者中,有相当一部分是冲着爬虫去的。因为爬虫可以帮你解决很多工作和生活中的问题,节约你的生命。不过 Python 还有一个神秘而有趣的应用领域,那就是量化交易。 量化交易,就是以数学模型替代人的主观判断来制定交易策略。通常会借助计算机程序来进行策略的计算和验证,最终也常直接用程序根据策略设定的规则自动进行交易。 Python 由于开发方便,工具库丰富,尤其科学计算方面的支持很强大,所以目前在量化领域的使用很广泛。市面上也出现了很多支持 Python 语言的量化平台。通过这些平台,你可以很方
BigQuant – 你的人工智能量化平台 – 可以无门槛地使用机器学习、人工智能开发量化策略,基于python,提供策略自动生成器
金融科技&大数据产品推荐:量子金服投研管理平台
在ChatGPT引领的AI浪潮下,涌现了一大批AI应用,其背后其实蕴含着一个基本事实:AI能力得到了极大突破——大模型的能力有目共睹,未来只会变得更强。这世界唯一不变的就是变,适应变化、拥抱变化、喜欢变化,天行健君子以自强不息。我们相信未来会有越来越多的大模型出现,AI正在逐渐平民化,将来每个人都可以利用大模型轻松地做出自己的AI产品。
Python 的学习者中,有相当一部分是冲着爬虫去的。因为爬虫可以帮你解决很多工作和生活中的问题,节约你的生命。不过 Python 还有一个神秘而有趣的应用领域,那就是量化交易。
这是 Python 进阶课的第十五节 - 量化交易之向量化回测 ,进阶课的目录如下:
本文作者是一位从事量化交易的实战者,他将他的实战心得写成一个量化交易系列,本篇则是系列的第一篇,从文中你会对整个量化交易的框架、流程、以及策略思路的来源地都有相应地说明。接下来就和文摘菌一起来看看量化交易应该如何入门吧!
随着科技的不断发展,自动化交易成为了投资者们追逐的一种高效、智能的投资方式。Python作为一种简洁、灵活且功能强大的编程语言,被广泛应用于自动化交易领域。本文将介绍如何使用Python进行自动化交易,并提供一些示例代码。
量化投资与机器学习微信公众号,是业内垂直于量化投资、对冲基金、Fintech、人工智能、大数据等领域的主流自媒体。公众号拥有来自公募、私募、券商、期货、银行、保险、高校等行业30W+关注者,荣获2021年度AMMA优秀品牌力、优秀洞察力大奖,连续2年被腾讯云+社区评选为“年度最佳作者”。 量化交易策略从研究到实盘,需要一套完整的工具链。从策略的理念、研究需要的数据、回测再到实盘,都需要不同的工具。随着量化投资理念的普及,量化开源项目在其中有着功不可没的作用。今天,大家就随小编盘一盘这些年,国内量化开源的顶流
看多了前面的铺垫,接下来写一写可以实操的。本篇给出写择时策略回测的详细步骤,并用代码展示全过程,代码用python写,数据和代码后台回复“择时”获取,可以自己测试。
写着写着,突然发现之前的标题“常用命令介绍”已经跟内容有点脱轨了,写的已经不只是命令了……
为了让这个策略能让计算机执行,首先,要使策略符合“初始化+周期循环”框架,像这样:
Backtrader 是 2015 年开源的 Python 量化回测框架(支持实盘交易),功能丰富,操作方便灵活:
在本篇文章里小编给大家整理的是一篇关于Python爬虫回测股票的实例讲解内容,有兴趣的朋友们可以学习下。
本文是对光大证券研究报告《基于阻力支撑相对强度(RSRS)的市场择时》前四种择时方法的复现。
本文展示了如何基于基础ARMA-GARCH过程(当然这也涉及广义上的QRM)来拟合和预测风险价值(Value-at-Risk,VaR)
原本想开始讲策略类的编写,后来觉得,结合回测代码其实能够更好的理解,所以先解读一下vnpy回测的代码吧,后续自己也想把vnpy回测的部分优化一下,毕竟我觉得可视化和回测结果方提高还有很多空间。
在Python量化领域,PyAlgoTrade和zipline是两大策略回测框架的先驱,其中PyAlgoTrade主要针对CTA策略(单一合约交易),而zipline主要针对统计套利策略(投资组合交易)。
vn.py框架更加适合做CTA类的策略,而不是高频策略。moonnejs在「维恩的派」论坛里分享了自己如何对vn.py回测引擎进行改进,使其适合于高频交易。感谢moonnejs的分享!
Alpha是投资者获得与市场波动无关的回报,一般用来度量投资者的投资技艺。比如投资者获得了12%的回报,其基准获得了10%的回报,那么Alpha或者价值增值的部分就是2%. 小编将推出一系列Alpha策略,希望能起到抛砖引玉的作用。如有不足之处,欢迎批评指正~~ 策略设计 在这里就不对alpha作介绍了,想了解alpha的读者可以去看看前两天Thomas大大推的《多因子系列之二》~ 那我们就直接从策略开始吧。作为alpha系列的第一篇,我们先来实现一个简单的Alpha策略。 首
大数据文摘作品,转载要求见文末 编译 | 徐宇文,蒋晔、范玥灿 卞峥,yawei xia 技术早已成为金融业的一项资产:金融交易的高速、高频与超大数据体量结合,促使金融机构在一年一年不断地加深对技术的关注,在今天,技术已经切实成为了金融界的一项主导能力。 在金融界最受欢迎的编程语言中,你会看到R和Python,与C++,C#和Java这些语言并列。在本教程中,你将开始学习如何在金融场景下运用Python。本教程涵盖以下这些方面: 基础知识:对于金融入门阶段的读者,你将会首先学到股票和交易策略,什么是时间序列
报告认为高阶矩可以刻画资产价格的变化,并且有一定的领先性,可以以此构造指数择时策略,原理见研报(在公众号后台回复“高阶矩”获取研报和代码)
问:现在上有关numeric analysis的课时,都用Python,实际工作时候呢?
本文是对报告《国信证券-单向波动率差值择时》部分内容的复现,个人理解,不保证正确性,欢迎指正!
今天内容不多,也不复杂。首先,之前写的stock_util补充一个获取指定日期前某个交易日期的函数,毕竟后期写到买卖点指标的时候,难免要用到前后两个交易日指标值的计算。接着,data包中再新增一个从数据集中提取数据的模块。
ai量化系统架构的思考 背景 现在很多群体,尤其是有点金融背景或兴趣的程序员群体,“大量”进入量化交易这个领域。 以quantopian为蓝本,做出to c的quant平台。这个前文说过,受众肯定是非常窄的。有能力的人,不需要平台;编码对于大多数人也是一个门槛。 另外,即便像果仁或ricequant也出了向导式写策略,门槛降下来不少。但还是不对。用户还只能从经验出发,或者去试。 回测只是一个结果,本质是构建策略思路的过程。比如盈利目标,短线的话,看基本面意义不在,一个季度基本面都不会变的(变了你也不知道)。
前几天介绍了vn.py实盘部分的底层实现机制,这一篇将为大家介绍数据以及回测部分的底层实现机制。
什么是量化交易?简单的说,就是用程序编写交易策略,用回测来模拟之前几年甚至几十年的交易,其中可以用到各种历史数据来辅助,包括但不限于:开盘价、收盘价、PE、PB、GDP、社交媒体的投资信息等等。
风险价值 (VaR) 是金融风险管理中使用最广泛的市场风险度量,也被投资组合经理等从业者用来解释未来市场风险
上一篇文章,我用了4000字这样比较长的篇幅,介绍了一些金融和量化交易相关的基本知识,还大概说了下人工智能在金融方面使用的优劣。这篇文章我们将用一个具体代码来进行一波股票价格预测的实战。
量化回测,苦于MySQL久矣,特别是进行股票日内因子构建分析或全市场因子测试的时候,每当按下回车时,MySQL就跟丢了魂一样,查询费时,大吞吐量读取也非常耗时。虽然MySQL的优化技巧足够写一本书,但这些都需要交给专业的DB工程师去做,量化打工人没有能力更没有时间倒腾这些。那有没有省时省力,高效存储股票行情数据的解决办法呢。带着这个问题,编辑部简单的搜索了一下,总体分为几个方案:
机器学习和深度学习已经成为量化对冲基金常用最大化其利润的常用的新的有效策略。 作为一名人工智能和金融爱好者,这是令人振奋的消息,因为它结合了我感兴趣的两个领域。 本文将介绍如何使用神经网络预测股票市场,特别是股票(或指数)的价格。 这篇文章基于我的GitHub中的python项目,在那里你可以找到完整的python代码以及如何使用该程序。 此外,对于更多这样的内容,请查看我自己的页面:Engineer Quant
之前两篇文章对若干资产配置模型进行了回测分析,本文重点关注风险平价模型及其优化,考察优化后的效果。
量化投资与机器学习微信公众号,是业内垂直于量化投资、对冲基金、Fintech、人工智能、大数据等领域的主流自媒体。公众号拥有来自公募、私募、券商、期货、银行、保险、高校等行业30W+关注者,荣获2021年度AMMA优秀品牌力、优秀洞察力大奖,连续2年被腾讯云+社区评选为“年度最佳作者”。 公司简介 念空科技是一家建立在数据科学研究基础上的量化投资机构,公司致力于运用科学的数据分析方法为投资人提供高价值的绝对收益产品。公司成立于2015年3月,同年7月在中国证券投资基金业协会备案,注册资本1.5亿,成立以来
随着Python编程语言的流行和普及,越来越多人对如何应用Python做金融数据分析和量化交易充满兴趣。但是不少人对量化投资本身存在一定的误解或认识不清,有的人过于异想天开,认为可以躺着挣钱(怕是只有岛国老师吧);有的人则因循守旧,认为没啥卵用;也有的人盲目追求模型的复杂性,在编程和数学中迷失了方向。
SignalFactorAnalyse单因子测试框架哪些因子可以为组合提供超额收益?这是构建多因子模型的第一步,也是最关键一步。 特征选择非常关键,只有把握关键特征才能对数据达到重要性认识,选择好的因子,才能获取超额收益率。 对于传统交易经验、金融理论、微观市场、机器学习、深度学习等不断挖掘出来的巨量待验因子,一个快速且有效的因子测试框架,将是Multi-factor策略系统中最为关键的一环。 因子模型测试思路 因子有效性的判断与筛选: •备选因子确定: 数学意义、经济意义、统计意义 •预处理: 数据空缺与
@朱嘉盛大佬考虑到当前在国内华为较为主流,也用 Windows 系统,尝试用华为的真机或者 eNSP 模拟器,把书中提及的实验做一做,方便大家学习记录,方便交流。
这本书真心好,作者就是极度追求技术把机器学习方法和量化投资结合起来。光是看里面如何打标签 (labelling), 采样 (sampling) 和分析回测危险 (danger of backtesting) 就物超所值。此外再看看有 Peter Carr, Fabozzi, Rebonato 这些如雷贯耳的大牛给这本书背书就可知其分量了。
由于有免费的CTP接口,期货程序化交易目前比较普遍,很多人都尝试过在文华财经、金字塔之类的软件上回测和编写实盘策略。
此示例说明如何使用三种方法估计风险价值 (VaR) 并执行 VaR 回测分析。这三种方法是:
程序员,或许内心深处都怀揣着一个量化投资的梦想,渴望凭借自己的编程和人工智能技能,再补点基础的金融知识,我们便可以构建一个量化交易系统,轻松实现财富自由。这样的理想确实诱人,似乎让我们看到了轻松实现个人价值的可能性,也让我们看到了用代码改变世界的力量。
领取专属 10元无门槛券
手把手带您无忧上云