人脸关键点检测是一个非常核心的算法业务,应用广泛。比如我们常用的换脸、换妆、人脸特效等2C应用中的功能,都需要先进行人脸关键点的检测,然后再进行其他的算法业务处理;在一些2B的业务场景中也都有涉及,如疲劳驾驶中对人脸姿态的估计,人脸识别前的人脸对齐等。
【新智元导读】计算机视觉领域的创业创新正呈现蓬勃发展之势。基于与高校实验室紧密的合作,商汤走出了一条自主研究核心算法的道路,连续在ImageNet等国际大赛上刷新图像识别准确率新高。他们打造了1207层神经网络,提出被认为是行业标准方案的106个标注点人脸识别。人脸识别准度到达99%后,技术上还有哪些难点?如何看待深度学习的“深度”问题?商业模式和落地方向上,商汤有哪些不一样?新智元专访商汤科技CEO徐立,为你解开疑惑。 人工智能领域的创业浪潮中,计算机视觉技术(CV)可以说是一个较为火热的方向,呈遍地开花
当各路资本都蜂拥而至某一领域的时候,其也就结束了淘金的黄金时期,当前的人脸识别正处于这一阶段。
随着深度学习算法登场,人脸识别精度相比五年前已有大幅飞跃。各种设备拍摄人脸所提取的信息会结成数据对,不断积累的海量数据成为反哺技术完善的“充足养料”。 “刷脸”时代带来巨大市场 刷脸进站、刷脸取款、刷
根据最新公布的全球权威人脸识别供应商测试 FRVT 结果,旷视、商汤和依图这三家视觉独角兽首次在公开场合同台竞技,最终由依图拿下第一。
AI科技评论按:市场上大部分美颜美肤,人脸特效应用背后的技术提供者就是商汤科技。 2017年7月11日,专注于计算机视觉和深度学习的AI领军企业商汤科技宣布完成4.1亿美元B轮融资,创下全球人工智能领域单轮融资最高纪录,商汤科技也成为全球融资额最高的人工智能独角兽企业。它是凭借什么引起投资人的青睐呢?这笔融资如何有效利用?他们的核心技术什么,商业落地情况怎么样?抱着对这些问题的疑惑,AI科技评论记者跟随搜狐自媒体观察团走进商汤,为大家一探究竟。 商汤为何能从众多AI创业公司中脱颖而出? AI 科技评论总结看
11月27日消息,全国信标委生物特征识别分技术委员会换届大会在北京举办。本次大会发布了两大事项,一是推出《生物特征识别白皮书(2019版)》,二是成立人脸识别技术国家标准工作组。
去年4月30日,在微软的开发者大会上,其介绍了一个网站——“How-Old.net”,然后各路神魔都开启了疯狂的“刷脸”模式,比如那张经典的郭德纲、四爷和小志测龄图,让人不禁掬一把同情泪。不过,不管是被系统认定为小鲜肉,还是老腊肉,如果忽略年龄的话,单从结果来看,该软件的鉴定效果还是相当不错的。而在这其中,关键因素就是现在被人们称之为“人脸识别”的人工智能技术。 在跨越了一年多的时间后,人脸识别已经成为语音识别之后又一广受关注的领域。此前,“How-Old.net”网站的火热传播让普通大众初步认识了人脸识别
据腾讯研究院统计,截至2017年6月,全球人工智能初创企业共计2617家。美国占据1078家居首,中国以592家企业排名第二,其后分别是英国,以色列,加拿大等国家。本文中选取了国外和国内部分有代表性的AI产业链条上相关公司就行分析(排名不分先后),希望对有志于从事人工智能相关工作或者想了解AI行业目前发展现状的朋友能有所帮助。小编会从AI芯片、应用层算法、应用领域等方面对相关公司进行盘点,由于部分公司可能会涉及产业链条上不同的领域,文中侧重选取了某些点进行分析阐述。备注:文中涉及到的企业估值均源于公开资料,本文对数字真实性不做任何担保;对于企业的明星指数是小编根据公开资料以及行业内部朋友反馈做的综合评估,不作为投资参考。
【新智元导读】旷视科技最新宣布4.6亿美元C轮融资,创下AI融资记录。当下,人脸识别技术做到了什么程度?未来计算机视觉创业还有没有机会?在上周日第二届微软亚洲研究院院友会年度大会上,微软全球执行副总裁沈向洋主持,商汤、旷视、依图和中科视拓的创始人/CEO/首席科学家——5位微软亚洲研究院院友坐在一起,共论人脸识别的技术趋势与商业落地。商汤、旷视、依图这些人脸识别独角兽各自的定位和发力点在哪里?他们怎么看待彼此和整个行业?本文将告诉你答案。 旷视科技昨天夜间宣布了金额高达4.6亿美元的C轮融资,引起热议。 2
你说这才不到3年,商汤这样的公司,就从借债发工资,狂飙成了一家60亿美元估值的超级独角兽。
商汤过去、现在及未来持续会做的是:在算法精度不断提升的前提下,拓展智慧城市从1到N的业务边界、促进2D感知到3D世界的落地,以及场景现实到虚拟现实的融合。
李根 发自 清华科技园 量子位 报道 | 公众号 QbitAI △ 刚完成B轮4.1亿美元融资的商汤科技 刚宣布4.1亿美元B轮融资的商汤科技,是一家令人熟悉又陌生的AI公司。 人们在他单轮巨额融资时
今天你4.1亿美元,明天我4.6亿美元,计算机视觉公司正在迎来发展的高潮。 今年7月份,计算机视觉公司商汤科技获得4.1亿美元融资,当时这笔融资打破了AI行业融资的新高,然而四个月不到的时间,这项记录
【新智元导读】3月22日,清华大学《人工智能前沿与产业趋势》系列课程第二讲开课,本讲聚焦当前AI领域最火、落地应用最成功的计算机视觉,由商汤科技CEO徐立主讲。徐立博士结合计算机视觉和人脸识别的具体应用,对AI的发展阶段进行了回顾,并对计算机视觉的技术突破和行业需求作了一番深入的探讨。新智元作为独家合作媒体,带来干货整理。 主讲老师 雷鸣 天使投资人 百度创始七剑客之一 酷我音乐创始人 清华大学海峡研究院大数据 AI 中心 专家委员 特邀讲者 徐立 商汤科
近日,美国国家标准与技术研究院(NIST)公布的全球人脸识别算法测试(FRVT)结果。其中,由来自中国的企业和研究院包揽了前五名。
软件算法是人工智能之灵魂,硬件设备是人工智能之骨肉。从2013年开始,深瞐科技即推出了车脸识别产品,包括一套车辆特征识别算法的SDK、一个面向公安的车辆综合应用平台。车辆因其特征相对标准、且具有唯一性
在人工智能领域大规模并行计算是一个刚性的需求,CPU由于本身设计更偏重于多任务处理、逻辑控制所以不太适合在矩阵计算这种需要高并行的场景中应用,这也给了像Nvidia、Xilinx等芯片公司在深度学习时代的爆发的机会。
张斌指出,虽然眼下从事三维人脸识别技术研发的公司很多,但其中的不少只能算作“半三维”技术或产品。
【新智元导读】 2017年的“315”落下帷幕,人脸识别技术公司纷纷躺枪。16日一大早,大家纷纷发表声明,表示自家的人脸识别技术还是相当安全的。本文整理了各家的回应,由此也可以看到,这些科技公司是否真的“躺枪”?人脸识别技术近年来持续火热,那么真实的行业发展状况如何?商业化应用中是否真的会如此轻易就被攻破?来看看专家们怎么说。 一年一度的“315” 落下帷幕,伴随着人工智能的火热,相关技术应用也在这场以“打假”、“维护消费者权益”为名的晚会上被点名。其中最受关注的一个便是——人脸识别。 晚会现场,主持人现
本文来自51Talk技术总监陈靖在LiveVideoStackCon 2018热身分享,并由LiveVideoStack整理而成。陈靖回顾了51Talk音视频技术的演进路线,从最早的QQ、Skype到接入第三方SDK,最后实现大部分功能自研,每个阶段都是根据业务需求、研发力量、资金投入等各种条件下的最优选择。未来,51Talk还会继续投入自研,完善功能。 文 / 陈靖 整理 / LiveVideoStack 直播回放: https://www.baijiayun.com/web/playback/in
昨晚的央视315晚会上,人脸识别技术被曝存在安全隐患。不少观众看到主持人在现场技术人员支持下,仅凭两部手机、一张随机正面照片及一个换脸App,分别就一张”眨眨眼”的照片和一段”活体检测”场景模拟,成功“攻破”人脸识别系统。 一般业内人士看到的是主持人手里所持人脸识别App的技术漏洞;但对于普通观众来说,他们看到的是一个不甚熟悉的高科技技术应用背后的“巨大风险”——人脸识别技术怎么会被破解?为什么一个换脸App软件就能轻松换脸?它会不会分分钟“掏空”我的账户……经由央视这个大众平台一放大,即使只是出于提醒消费
当我们在谈论AI的时候,不可避免的会遇到数据隐私的问题,如今这个问题已经延伸到人脸识别领域。近日,荷兰安全研究人员Victor Gevers在推特上曝光一条消息,表示中国一家面部识别公司SenseNet存在数据泄露问题,任何人都可以访问其人脸跟踪数据的记录。
作者 | 阿司匹林 出品 | 人工智能头条(公众号ID:AI_Thinker) 今日(4 月 9 日),商汤科技(SenseTime)宣布完成 6 亿美元 C 轮融资。该轮融资由阿里巴巴集团领投,新加坡主权基金淡马锡、苏宁等投资机构和战略伙伴跟投。 商汤科技联合创始人、CEO 徐立表示:“商汤科技 C 轮融资将进一步夯实公司在人工智能领域的领军地位:首先,以商汤原创技术为核心,赋能更多行业;其次,与全球头部伙伴进行深度合作,进一步拓展商业版图;第三,强化上下游产业链,深化商汤在人工智能产业链布局。” 201
长久以来,日新月异的科技发展已经为人类社会带来了各种各样影响深远的技术创新和革新思潮。
写这篇文章之前先介绍一下自己,我是一位90后创业者,18年硕士毕业后在业界常说的“CV四小龙“中做了近两年的算法工程师。最近在从事互联网+AI领域的创业。所以本文是以一位AI从业者的角度来谈一下个人对AI领域的看法,如有偏颇,还望不吝指正。
CV君今天盘点了 CVPR 2019 所有人脸相关论文,总计51篇,其中研究人脸重建与识别的论文最多,人脸识别中新Loss的设计有好几篇,人脸表情分析也不少,检测和对齐相对很少了。
还有一个有趣的结果,像来自商汤、旷世这样的亚洲算法,白种人和黄种人之间的误判差距就小一些。
AI 科技评论消息,9 月 8 日-14 日,2018 欧洲计算机视觉大会(ECCV 2018)在德国慕尼黑召开,ECCV 每两年举办一次,与 CVPR、ICCV 共称为计算机视觉领域三大顶级学术会议,每年录用论文约 300 篇。根据 ECCV 2018 宣布的最终结果,商汤科技及联合实验室共有 37 篇论文入选,主要集中在以下领域:大规模人脸与人体识别、物体检测与跟踪、自动驾驶场景理解与分析、视频分析、3D 视觉、底层视觉算法、视觉与自然语言的综合理解等。此外,商汤科技在 2018 年 COCO 比赛物体检测(Detection)项目中夺得冠军,开源 mm-detection 检测库。凭借以上事项,商汤科技在雷锋网旗下学术频道 AI 科技评论数据库产品「AI 影响因子」中有相应加分。
刚刚,商汤科技在其2019人工智能峰会上,一口气发布了11款产品。覆盖智慧城市、教育、医疗、零售、AR等五大领域。
郭一璞 发自 凹非寺 量子位 报道 | 公众号 QbitAI 高考分数刚刚出来,各地考生与家长还在纠结报志愿的时候,进北大要看脸了。 嗯,是说进北大校门。 今天,北大正式启用人脸识别门禁,进入校门可
๑乛◡乛๑ 跳槽指南又来了~上一期你拿了多少fen? AI行业也不是只有BAT可去嘛!CV创业公司也相当有钱途。应用场景不断增加,融资规模不断攀升,上市计划不断推进…… 在这个跳槽季,赶紧选择加入CV创业公司,可能不用多久,就会走上人生巅峰。想想,是不是还有点小激动? 但,还是那个问题:你真的准备好了吗?你真的了解这些公司吗? (以及,你知道哪家妹纸最多吗?) 表急,量子位这就给大家送上特别策划的“跳槽指南”系列真题第二弹。帮你检查自身CV技能如何,也帮你挑选更爱哪家公司。 下面,答题开始。 特别提醒
今天跟大家分享一款新晋开源的出自香港中文大学MMLab实验室的人脸识别库,其最大特点是支持人脸多任务训练,方便使用PyTorch进行人脸识别的训练、评估、特征提取。
这不是石建萍第一次来 CVPR 了。过去这八年,她几乎没落下过一届,倒也习惯了每年办一次美国签证。只不过,这么多年以来,参加 CVPR 的身份却在不断变化:从一个本科生,到博士生,到研究员,再到如今商汤科技的研究总监。
1月6日,美国国家标准与技术研究院(NIST)公布了最新的人脸识别算法测试(FRVT)成果,格灵深瞳再次刷新纪录:在7项测试子任务中,获得2项第一、3项第二,综合排名世界第一的成绩。
智能门锁在经过2018年的爆发直至近几年来的持续增长,目前市场上各类的产品基本都涵盖了密码、刷卡、指纹这几项关键的开门方式,人脸识别技术作为一种新的引用技术,成为众多厂家为追求产品差异化而形成的一种趋势。
中国计算机大会CNCC 2019(10.17-19)即将在苏州开幕。本次会议据估计将有8000+人次参会,会议包括十六位国内外计算机领域知名专家、企业家的大会报告、三场大会主题论坛,七十余场前沿技术论坛,二十场特色活动,以及一百个科技成果展。
数据猿导读 深度学习是如何做到的?算法在超过人类后,现在到底在哪些行业进行应用了?服务了哪些业务,比如安防监控、互联网金融、机器人等,它们是否已经在用,哪些地方用了之后能带来效益上的增长?人工智能浪潮
对于这样的结果,外界并未有太多的诧异。AI领域的投融资事件数量在2019年时就已经显著下降,“四小龙”的上市路可谓一波三折,在市场整体不乐观的环境下,机构投资者的撤离可以说是预料之中的结果。
人脸识别、图像分类、语音识别是最早的深度学习取得突破的主要几个技术方向。在2014年前后,多家技术公司纷纷宣布其利用深度学习在LFW上取得的最新成果,此为深度学习技术在人脸识别领域的“小试牛刀”。随后,商汤、Face++等国内的多家技术公司针对金融行业人脸认证这一需求持续改进算法,随着PK的不断升级,人脸认证图像相对可控下的人脸识别性能不断被刷新,固定识别通过率为90%,识别误匹配率指标被降低了好几个数量级,此为深度学习技术在人脸识别领域的“硕果初尝”。类似的技术被用在了手机APP的人脸登录、相册管理等,这里不一一赘述。
夏乙 李根 发自 凹非寺 量子位 报道 | 公众号 QbitAI 商汤创始人汤晓鸥跟中国香港记者透露了一大堆新消息。 例如,正在进行C轮融资的商汤科技,最快有可能在明年IPO(上市)。作为国内估值最
这是第二次给大家推荐Github项目,上次给大家介绍的是使用核心主义价值观作为编码的编译器:媒体人自保攻略,今天介绍在Github开源的人脸识别项目,目前已经获得2000+的star,以后推荐Github项目会成为一个保留项,自己遇到觉着不错的就跟大家推荐,希望跟大家共同进步。
2018年生物特征识别冬令营(IAPR/IEEE Winter School on Biometrics 2018)由IAPR和IEEE冠名和赞助,于2018年1月29日至2月2日在深圳举办,由香港浸会大学计算机科学系、中科院自动化所和深圳大学计算机与软件学院联合主办。本文按香港中文大学助理教授吕健勤在生物特征识别冬令营(WSB2018)的报告《Deep Learning in Face Analysis》进行整理,经《生物特征识别冬令营》授权发布。
人脸识别是目前商业应用最成熟、最广泛的人工智能技术之一,成为开发者、企业接入AI能力的首选。
云端人脸识别平台方案虽然看起来美好,但是当没有网络的时候呢?当需要控制硬件成本的时候呢?离线则成为人工智能技术落地的关键,这也是将AI从云到端的唯一方式。 当GMIC遇上视觉AI “黑科技”酷炫又好玩
今天下午和朋友闲聊,聊到人工智能泡沫的问题。晚上写这篇博客,表达下自己对这个问题的见解。 1. 泡沫进行时 互联网行业自诞生以来,相关产业要么泡沫要么冷寂,并不存在不是泡沫又不冷寂的状态。
领取专属 10元无门槛券
手把手带您无忧上云