首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

带小朋友体验语音识别大模型:Whisper

亲爱的小朋友们,大家好!欢迎来到有趣的语音识别大冒险!今天,我们将一起探索神奇的语音识别世界,就像是魔法一样,让机器能听懂我们说的话。...它们使用了一种叫做“语音识别大模型”的魔法工具。这个大模型可以理解各种各样的声音,就像是小朋友们可以听懂不同的朋友说的话一样。...让我们一起探索语音识别的奥秘,一起学习怎么与计算机交流,让声音成为我们沟通的桥梁。准备好了吗?让我们开始这场有趣的冒险吧! 大冒险开始啦! 本次实验用到的环境与是 Colab 相同。...你是否心动了呢,赶快开始你的语音识别之旅吧! Whisper是一种基于深度学习的语音识别模型,它是一种通用的语音识别模型,可以用于语音识别、语音翻译和语言识别等任务。...但是,一旦训练完成,模型可以在各种不同的应用场景中提供高质量的语音识别结果。

1.1K31

所谓好的用户体验

所谓好的用户体验 由 Ghostzhang 发表于 2012-07-16 19:20 怎样的用户体验才是好的用户体验呢?...好像有点跑题了,这次的思考是:并不是所有关注用户感受的体验就叫做是“好”的用户体验。 从何而来这想法呢?...上面的唠叨是一个引子,结果就是"不能赚钱的交互不是好交互",简单的说就是好的交互可以赚钱,可是不好的用户体验也是能赚钱的。...但是从商家的角度来说,我们需要考虑几个因素,第一个就是成本,这个是直接决定了能给用户提供最佳体验的上限到哪,好的椅子意味着更高的成本;其次是投入产出比,开门做生意,不为赚钱是很少的,投入越多,意味着盈利周期可能越长...麦当劳的椅子虽然用户体验不是最好的,但却是这么多年来产品与体验最好的平衡,从而实现利润的最大化。 当你再次遇到这种问题时,就知道如何处之泰然了。(本届 年会 的主题)

3.1K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    好的工作想法从哪里来

    提出论点 好的研究想法,兼顾摘果子和啃骨头。...两年前,曾看过刘知远老师的一篇文章《好的研究想法从哪里来》,直到现在印象依然很深刻,文中分析了摘低垂果实容易,但也容易撞车,啃骨头难,但也可能是个不错的选择。...学生年代,作为老师的一个不成器弟子,学术上没有什么建树,幸运的毕了业。现如今到了工业界摸爬滚打,虽然换了个环境,但是发现生存的道理没变。 反面例子 不好的工作想法会加剧“卷”的用户体验。...这样的工作体验确实很糟糕。 我的触发点 沿着你造梦的方向先动手干起来。一年前刚开始决定做攻击者画像的时候,其实心里有底也没底。...引用 好的研究想法从哪里来 杜跃进:数据安全治理的基本思路 来都来了。

    8.2K40

    干货 | Siri 语音识别的小心机:你在哪里,就能更准确地识别那附近的地址

    与其他科技巨头人工智能实验室博客的论文解读、技术成果分享不同,苹果的机器学习日记虽然也是介绍他们对机器学习相关技术的心得体会,但侧重点在于技术产品的实现过程、技术资源用户体验之间的取舍,更像是「产品经理的...近年来,由于深度学习技术的广泛应用,自动语音识别(ASR)系统的准确率有了显著的提高。...然而,人们目前主要是在通用语音的识别方面取得了性能的提升,但准确地识别有具体名字的实体(例如,小型本地商户)仍然是一个性能瓶颈。...我们决定通过将用户地理位置信息融合到语音识别系统中来提高 Siri 识别本地 POI 的名称的能力。...在部署好基于地理位置的语言模型后,我们的自动语音识别系统的输出将具有特殊的标记,例如:在通过类语言模型框架识别的地理实体周围会有「\CS-POI」标记。

    2K20

    语音识别系列︱paddlespeech的开源语音识别模型测试(三)

    参考: 语音识别系列︱用python进行音频解析(一) 语音识别系列︱paddlehub的开源语音识别模型测试(二) 上一篇paddlehub是一些预训练模型,paddlespeech也有,所以本篇就是更新...1 安装 参考:PaddleSpeech 一键预测,快速上手Speech开发任务 PaddleSpeech 是 all-in-one 的语音算法工具箱,包含多种领先国际水平的语音算法与预训练模型。...你可以从中选择各种语音处理工具以及预训练模型,支持语音识别,语音合成,声音分类,声纹识别,标点恢复,语音翻译等多种功能,PaddleSpeech Server模块可帮助用户快速在服务器上部署语音服务。...文档链接:语音识别 第一个语音识别的示例: >>> from paddlespeech.cli.asr.infer import ASRExecutor >>> asr = ASRExecutor()...、:;) 3 案例 3.1 视频字幕生成 是把语音识别 + 标点恢复同时使用。

    8.4K20

    语音识别与语音控制的原理介绍

    cd /userdata/dev_ws/ # 配置TogetheROS环境 source /opt/tros/setup.bash # 从tros.b的安装路径中拷贝出运行示例需要的配置文件。...,说出“地平线你好”后,即可唤醒 ​ 当人依次在麦克风旁边说出“地平线你好”、“向左转”、“向右转”、“向前走”、“向后退”命令词,语音算法sdk经过智能处理后输出识别结果,log显示如下 ​ 识别到语音命令词...语音控制 SSH连接OriginBot成功后,配置智能语音模块: #从TogetheROS的安装路径中拷贝出运行示例需要的配置文件。...bash config/audio.sh 启动机器人底盘在终端中输入如下指令,启动机器人底盘: ros2 launch originbot_bringup originbot.launch.py 启动语音控制以下是口令控制功能的指令...: ros2 launch audio_control audio_control.launch.py 此时即可看到小车运动的效果了

    10810

    基于树莓派的语音识别和语音合成

    大家好,又见面了,我是你们的朋友全栈君。...基于树莓派的语音识别和语音合成 摘要 语音识别技术即Automatic Speech Recognition(简称ASR),是指将人说话的语音信号转换为可被计算机程序所识别的信息,从而识别说话人的语音指令及文字内容的技术...本文采用百度云语音识别API接口,在树莓派上实现低于60s音频的语音识别,也可以用于合成文本长度小于1024字节的音频。...,实现对本地语音文件的识别。...测试前,需要提前用录音软件录制好三段音频,然后用Adobe Audition软件对音频格式化处理,因为百度智能云语音识别技术支持原始 PCM 的录音参数必须符合 16k 采样率、16bit 位深、单声道

    4.1K30

    语音识别技术的相关知识

    概 述 语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列...与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。 语音识别技术的应用包括语音拨号、语音导航、室内设备控制、语音文档检索、简单的听写数据录入等。...训练是指对预先收集好的语音进行信号处理和知识挖掘,获取语音识别系统所需要的“声学模型”和“语言模型”;识别是对用户实时语音进行自动识别。...HMM方法现已成为语音识别的主流技术,目前大多数大词汇量、连续语音的非特定人语音识别系统都是基于HMM模型的。...矢量量化器的设计就是从大量信号样本中训练出好的码书,从实际效果出发寻找到好的失真测度定义公式,设计出最佳的矢量量化系统,用最少的搜索和计算失真的运算量,实现最大可能的平均信噪比。

    2.7K41

    常用的语音芯片工作原理_分类为语音播报 语音识别 语音合成tts

    1.0 语音芯片分类-语音播报-语音识别-语音合成关于声音的需求,从始至终,都是很刚需的需求 。从语音芯片的演化就能看出很多的端倪,很多很多的产品他必须要有语音,才能实现更好的交互。...而语音芯片的需求分类,其实也是很好理解的,从市场上常用的芯片产品特性,大概就能归类如下:语音播报芯片--KT148A语音识别芯片--思必驰-云知声语音合成芯片-TTS语音播报的类别-KT148A它实现的原理...推荐KT148A-sop8解决方案,大概的产品类型如下:语音识别的类别-思必驰-云知声1、这个品类就很复杂了,是语音芯片里面最复杂的存在,常见的家电语音控制,设备的语音唤醒,在线识别和离线识别2、都是相差很多很多...语音合成的类别-TTS1、这个品类,其实是非常好的一个应用,但是还是因为市场太小,导致芯片的成本分摊不下来2、它实现的原理,就是将需要用到的音色库,存储在芯片或者外置存储器里面,需要播放的时候,取出不同音色库组合出来声音...毕竟这个对芯片的要求相对低,所以成本控制的比较好如果需要医院叫号机类型的应用,那TTS就必须上了,没有什么比他还灵活的至于语音识别类型的应用,离线的应用还是推荐云知声,他们的平台做得好,前期验证的成本比较低还要分清楚您的需求

    28340

    Moonshine 用于实时转录和语音命令的语音识别 !

    这篇论文介绍了一种名为Moonshine的语音识别模型系列,该模型针对实时转录和语音命令处理进行了优化。...该模型在各种长度的语音片段上进行训练,但不需要使用零填充,从而在推理时间内提高了编码器的效率。...1 Introduction 实时自动语音识别(ASR)对于许多应用至关重要,包括在演讲中的实时转录、听力障碍人士的辅助工具以及智能设备和可穿戴设备中的语音命令处理。...用户反馈表明,这种延迟水平无法提供平滑和响应的用户体验,这促使作者深入调查。...第3部分描述了Moonshine的架构、数据集准备和训练过程,而第4部分在标准语音识别数据集上提供了结果的评估。第5部分得出结论。

    22110

    语音交互中的“等待体验”研究

    对应到人机语音交互中的三个部分——“输入体验”、“等待体验”、“回复体验”,“等待体验”同样处于整个体验循环链的中间环节,在语音交互体验中起到了承上启下的重要作用。...但是在语音交互领域,语音的承载体是无形的,或不确定形态的,我们甚至没有承载loading态的界面。在这种情况下等待体验又受哪些变量影响呢?影响的程度怎样呢?...综上,可以说在语音交互领域,等待体验虽然重要,但目前仍是“一团迷雾”。鉴于此,我们以目前语音交互的主要载体——智能音箱产品为例,对AI产品中的等待体验问题进行专题研究。...二 智能音箱的等待体验研究 目前的智能音箱,主要采用先语音唤醒后输入指令的语音交互流程。...2)1350ms到2150ms,方案D、E感知舒适的用户比例较高,加入人声/音效后,如方案D的语音应答“好的”,有助于缓解用户延迟感受,提升速度感知体验。

    2K90

    小米语音首席科学家 Daniel Povey:语音识别卷完了,下一个机会在哪里?| 智者访谈

    他们如何看待这种技术融合的趋势? 本期《智者访谈》邀请到著名开源语音识别项目 Kaldi 的创始人、小米集团语音首席科学家 Daniel Povey 博士。...如果你去参加语音会议,会发现人们对新的语音技术并不那么兴奋。这种情况以前也出现过,但这次可能是永久性的,因为语音识别确实已经做得很好了。...现在大家对文字转语音(TTS)更感兴趣,最近几年兴起的流匹配(flow matching)方法简单易懂,而且效果特别好,也很稳定,我很喜欢研究它们。 我在小米的团队正在转向 TTS(文字转语音)。...他首次将序列区分性训练方法应用于语音识别,他提出的 LF-MMI 建模方法至今仍为商用语音识别系统普遍使用的标准技术。...他也是将深度学习用于语音识别领域的重要引领者,在语音识别中推广了时延神经网络,配合 LF-MMI 训练,是 2015-2020 年学术界和工业界普遍使用的最佳组合。

    8400

    CNN 在语音识别中的应用

    作者:侯艺馨 总结 目前语音识别的发展现状,dnn、rnn/lstm和cnn算是语音识别中几个比较主流的方向。...1 语音识别为什么要用CNN 通常情况下,语音识别都是基于时频分析后的语音谱完成的,而其中语音时频谱是具有结构特点的。...,语音识别取得了很大的突破。...百度语音识别发展 百度发现,深层 CNN 结构,不仅能够显著提升 HMM 语音识别系统的性能,也能提升 CTC语音识别系统的性能。...5.9% 的词错率已经等同于人速记同样一段对话的水平,而且这是目前行Switchboard 语音识别任务中的最低记录。这个里程碑意味着,一台计算机在识别对话中的词上第一次能和人类做得一样好。

    8.9K31

    语音识别技术的进步与挑战

    语音识别技术的进步与挑战大家好,我是Echo_Wish。今天我们来聊聊语音识别技术,这个已经深入到我们日常生活中的神奇技术。从智能音箱到手机助手,再到车载导航系统,语音识别无处不在。...它的快速发展给我们的生活带来了极大的便利,但同时也面临着诸多挑战。一、语音识别技术的进步语音识别技术从诞生至今,经历了巨大的进步。最初的语音识别系统只能识别有限的词汇,且准确率较低。...随着计算能力的提升和机器学习算法的发展,语音识别技术取得了长足的进展。1. 语音识别的基本原理语音识别系统主要包括以下几个步骤:语音采集:通过麦克风等设备采集语音信号。...数据隐私与安全语音识别系统需要采集和处理大量的语音数据,这带来了数据隐私和安全问题。如何保护用户的隐私,防止数据泄露,是语音识别技术在推广应用中必须解决的问题。...三、未来展望尽管面临诸多挑战,语音识别技术的未来依然充满希望。以下是一些可能的未来发展方向:1. 多模态融合结合语音、图像、文本等多种模态的信息,可以提升语音识别的准确率。

    11610

    基于Pytorch实现的语音情感识别

    项目介绍 本项目是基于Pytorch实现的语音情感识别,效果一般,提供给大家参考学习。...源码地址:SpeechEmotionRecognition-Pytorch 项目使用 准备数据集,语音数据集放在dataset/audios,每个文件夹存放一种情感的语音,例如dataset/audios...python export_model.py 预测语音文件。...python infer.py --audio_path=dataset/audios/angry/audio_0.wav 数据预处理 在语音情感识别中,我首先考虑的是语音的数据预处理,按照声音分类的做法...声谱图和梅尔频谱这两种数据预处理在声音分类中有着非常好的效果,具体的预处理方式如下,但是效果不佳,所以改成本项目使用的预处理方式,这个种预处理方式是使用多种处理方式合并在一起的。

    2.2K50

    语音识别!大四学生实现语音识别技能!吊的不行

    ▌语言识别工作原理概述 语音识别源于 20 世纪 50 年代早期在贝尔实验室所做的研究。早期语音识别系统仅能识别单个讲话者以及只有约十几个单词的词汇量。...现代语音识别系统已经取得了很大进步,可以识别多个讲话者,并且拥有识别多种语言的庞大词汇表。 ▌选择 Python 语音识别包 PyPI中有一些现成的语音识别软件包。...▌音频文件的使用 首先需要下载音频文件链接 Python 解释器会话所在的目录中。 AudioFile 类可以通过音频文件的路径进行初始化,并提供用于读取和处理文件内容的上下文管理器界面。...现在我们就得到了这句话的 “the”,但现在出现了一些新的问题——有时因为信号太吵,无法消除噪音的影响。 若经常遇到这些问题,则需要对音频进行一些预处理。...可以通过音频编辑软件,或将滤镜应用于文件的 Python 包(例如SciPy)中来进行该预处理。处理嘈杂的文件时,可以通过查看实际的 API 响应来提高准确性。

    2.3K20

    语音识别全面进入CNN时代:会读“语谱图”的全新语音识别框架

    而实现这一目标的重要前提是计算机能够准确无误的听懂人类的话语,也就是说高度准确的语音识别系统是必不可少的。 作为国内智能语音与人工智能产业的领导者,科大讯飞公司一直引领中文语音识别技术不断进步。...通过进一步的研究,我们在FSMN的基础之上,再次推出全新的语音识别框架,将语音识别问题创新性的重新定义为“看语谱图”的问题,并通过引入图像识别中主流的深度卷积神经网络(CNN, Convolutional...CNN早在2012年就被用于语音识别系统,并且一直以来都有很多研究人员积极投身于基于CNN的语音识别系统的研究,但始终没有大的突破。...,更好的表达了语音的长时相关性,比学术界和工业界最好的双向RNN语音识别系统识别率提升了15%以上。...在和其他多个技术点结合后,讯飞DFCNN的语音识别框架在内部数千小时的中文语音短信听写任务上,获得了相比目前业界最好的语音识别框架——双向RNN-CTC系统15%的性能提升,同时结合讯飞的HPC平台和多

    3.6K50

    KT148A语音芯在智能锁语音提示的优势在哪里成本还是性能

    智能锁,已经广泛的应用于生活的各个场景,确实是一个好产品,我自己都在用,也很方便而锁基本上都搭配有语音芯片或者蜂鸣器,低端的产品都是蜂鸣器,中端的产品基本都搭配语音芯片而智能锁方案中,关于语音芯片的需求第一种...不使用语音芯片,使用Flash存储,使用MCU的DAC加功放组成。这种方案有一定的门槛,稳定性和效果需要一定的能力。第二种,使用集成语音芯片方案。...这里强烈推荐KT148A-sop8的语音芯片,flash型,可以重烧,可以用户自己修改语音,当然,在多语音,长语音的应用中,成本是非常的有优势当然面对智能锁的需求,我们也开发了实用型的功能扩展超出255...地址范围的语音,很多otp的芯片最大也只能支持的255的地址,而flash的KT148A可以扩展到65535的地址范围极致的语音压缩,可以存储将近440秒的高音质,如果音质稍微在压缩一下,存放600秒也是可以实现的...,就需要做音质的取舍Flash型的语音芯片,最大的好处就是芯片只有一种,没有任何其他的型号,不需要区分物料,不需要担心库存,即使生产有异常,也可以在线烧录,不至于拆机或者报废KT148A用户自己下载语音的最小系统板如下

    13110

    基于Pytorch实现的MASR中文语音识别

    MASR中文语音识别 MASR是一个基于端到端的深度神经网络的中文普通话语音识别项目,本项目是基于masr 进行开发的。...Facebook在2016年提出的Wav2letter,只使用卷积神经网络(CNN)实现的语音识别。...自定义的语音数据需要符合一下格式: 语音文件需要放在dataset/audio/目录下,例如我们有个wav的文件夹,里面都是语音文件,我们就把这个文件存放在dataset/audio/。...每一行数据包含该语音文件的相对路径和该语音文件对应的中文文本,要注意的是该中文文本只能包含纯中文,不能包含标点符号、阿拉伯数字以及英文字母。 生成训练的数据列表和数据字典。...infer_path.py的参数wav_path为语音识别的的音频路径。 infer_record.py的参数record_time为录音时间。

    4.1K86
    领券