转载自:微软亚洲研究院 未经允许不得二次转载 近日社交网络上爆红的一款换脸应用,让许多普通用户体验到了跟爱豆同框、与偶像飙戏的快乐,也因数据使用带来的问题陷入了舆论的漩涡——除了用户隐私保障,如何辨别和处理换脸应用所制造的合成照片...以技术防御技术,让假脸无所遁形 为了解决这个问题,学界与业界开始研究如何利用 AI 技术去反向鉴别图像、视频的真伪。...Face2Face 则是用其他真实的人脸去替换原本的人脸,不涉及人脸的生成,对于它制造的脸,人类的识别率只有41%*。...,逼真地合成保留图中人脸身份信息的图像。...表1:针对已知换脸算法的识别测试结果 更重要的是,一般的换脸鉴别方案需要针对每一种换脸算法研发专门的换脸鉴别模型,想要鉴别一张图像的真伪,需要逐个尝试所有模型。
来源 | 微软亚洲研究院AI头条(ID:MSRAsia) 近日社交网络上爆红的一款换脸应用,让许多普通用户体验到了跟爱豆同框、与偶像飙戏的快乐,也因数据使用带来的问题陷入了舆论的漩涡——除了用户隐私保障...以技术防御技术,让假脸无所遁形 为了解决这个问题,学界与业界开始研究如何利用 AI 技术去反向鉴别图像、视频的真伪。...Face2Face 则是用其他真实的人脸去替换原本的人脸,不涉及人脸的生成,对于它制造的脸,人类的识别率只有41%*。...,逼真地合成保留图中人脸身份信息的图像。...表1:针对已知换脸算法的识别测试结果 更重要的是,一般的换脸鉴别方案需要针对每一种换脸算法研发专门的换脸鉴别模型,想要鉴别一张图像的真伪,需要逐个尝试所有模型。
具体包括在介质检测方向上介绍活体本质特征挖掘、跨场景学习方法和自适应训练策略;在内容取证方向上分别介绍基于图像和基于视频的取证方法;在对抗攻防方向介绍隐蔽式对抗攻击和高效查询攻击方法,多个维度有效筑牢人脸安全的防线...此外,为进一步去除人脸结构信息对活体鉴别的影响,我们还提出了基于结构解构和内容重组的活体检测算法[2]。...整体的训练流程采用迭代式的更新策略,最先学好初始化的域信息鉴别器,然后基于鉴别器迭代进行样本分配权重和特征分配权重学习。...03/人脸内容取证 ·人脸图像内容取证 针对人脸伪造图像,我们分别从伪造模式建模、特征增强学习以及对比学习框架设计等角度切入,促进模型对伪造痕迹的捕捉,有效鉴别真假。...·人脸视频内容取证 对于伪造视频,我们分别提出时空不一致建模和多片段学习算法,充分捕捉时序运动中的伪造痕迹,在视频维度有效鉴别真伪。
随着深度学习等技术的发展,机器自动生成内容的水平不断提高;其中深度伪造(Deepfakes)更是内容生产中的热门技术,在短视频、直播、视频会议、游戏、广告、军事等领域已得到了广泛应用。...深度伪造技术的兴起主要基于图像和音频合成技术的发展,是运用深度学习模型和数据等各种资源,合成具有特定内容音视频的技术;其中利用深度伪造技术生成逼近实拍的人脸图像的技术又被称为伪造人脸或假脸合成技术。...一、基本思想 目前现有的人脸交换检测器简单使用基于 CNN 的分类器将人脸图像映射到真伪标签上,在已知的操作方法上获得了极好的精度。然而,他们无法识别由未知的面部交换模型产生的假面部图像。...鉴别方除了挖掘待测图像的伪造线索外,可以更加充分地利用其它信息资源。 使用参考人脸图像的鉴别思路在实际应用中是可行的。...实际应用的伪造人脸图像鉴别任务绝大多数情况针对的是重要著名人士,对于鉴别方而言获取相应人物的真实人脸图像并不困难。除此之外该框架相比于其他鉴别模型无额外的数据要求。
文 | qqsh 编 | 杨晓凡 近年来,图像合成技术日趋进步,GAN在给我们带来艺术体验的同时也埋下了很多隐患。...既然我们可以用GAN来合成难辨真伪的假图,反过来我们也可以用GAN去鉴别图像的真假。GAN一般基于CNN结构,当用来作为鉴伪模型时也有很多不足。...来自伯克利和Adobe的研究者最近提出了一种通用的鉴别方法,通过训练一个单一的ProGAN就可以鉴别其他11种 GAN 生成图像的真伪,并且具有较高的准确率和较强的鲁棒性,对于新提出的StyleGAN2...新的模型 作为一个鉴别图像真伪的模型,除了考虑对抗现有的GAN之外,还需要评估其对未来的影响力。当合成图像的技术不断发展时,它是否还能击败新的GAN也是我们所关注的。...4 讨论与总结 尽管这篇论文在鉴伪上更胜一筹,但是还是有许多令人担忧的地方。 论文的方法虽然泛化性能很高,但是毕竟不是100%准确的鉴别图像真伪。
增加训练数据的数量和多样性可以改善性能。二、图像安全======随着生成式的人工智能快速发展,越来越多的系统都能够生成图像,图像的真伪以及安全也越发重要。...下图展示了 AI 图像安全在文档图像的篡改以及人脸真伪具体案例:1、篡改种类图像篡改指的是对数字图像的未经授权或欺骗性修改,以改变图像的内容或意义。分为四种类型:复制移动、拼接、擦出、重打印。...服务稳定:提供高可靠性、弹性可伸缩、高并发承载的云端服务,扩展性好,算法的持续迭代优化对用户使用稳定性无影响。多样部署:提供公有云 API 以及私有化部署两种方式。...4、AIGC假图鉴别在安全领域,合合信息紧跟时代步伐做了生成式AI的鉴别工作,主要包括身份验证与访问控制、移动设备的安全检测、数字图像真实鉴定。...郭丰俊博士以人脸鉴别场景为例,提出该鉴别体系的架构是通过通过多个空间注意力头来关注空间特征,并使用纹理增强模块放大浅层特征中的细微伪影,增强模型对真实人脸和伪造人脸的感知与判断准确度,其中纹理的细节变化是人脸鉴别的一个非常重要的依据
据了解,“Deepfake鉴别挑战赛”的目标是,找到一款能检测视频是否被换过脸的工具,并且它能被每个人便捷操作。...,因此,无论是主动给图片添加水印还是通过“找茬”来辨别真伪,都是解决 Deepfake 造假问题的必要手段。...功能上,长毛猫Angora 记忆力好、动手能力强,可以快速找到换脸视频的原版本,或者是不同版本。而短毛猫 Maru 则嗅觉敏锐、火眼金睛。它可以弥补长毛猫 Angora 的不足。...用区块链技术鉴别假图片和假视频 能够用技术来解决技术问题的,不只有AI,区块链技术同样也能解决假图片问题。...通过这些信息,媒体和用户可以判断出该图片是否经过PS等人为修饰,进而判断相关资讯真伪。 除了鉴别假图片,区块链技术还能鉴别假视频。
通过上传被替换的“原图”和合成后的“假图”到生成对抗性网络(GAN)模型中,当图像的逼真度足够高时,该图像就会被输出。然后,AI模型再通过提取视频关键帧,人脸对齐等技术,让人脸完美“融合”到原视频。...这类视频仿真度高、欺骗性强,肉眼一般难以识别真伪。 2017 年底,一位名为“Deepfake”的Reddit用户,将神奇女侠女主角的脸成功替换到其他电影上,这个“逼真”的视频轰动一时。...2019年11月,我国发布了《网络音视频信息服务管理规定》,该规定明确指出:网络音视频信息服务提供者应当部署违法违规音视频以及非真实音视频鉴别的相关技术方案。...2019年9月,Facebook宣布了全球Deepfake检测挑战赛,旨在号召研究人员寻找“打假”的有效方法,提升鉴别假视频的技术,维护和谐的网络环境。...随后,Google AI 开源 Deepfake 视频检测数据集,希望能帮助研究者找到更好的鉴别假视频的方法。
对人脸识别系统的攻击,主要有3类:照片攻击、视频攻击和3D模型攻击。非法 分子或者假冒用户在获得合法用户的照片或视频后,使用合法用户的照片或视频作为伪造 的人脸试图欺骗系统。...为了区分真实人脸以及照片、视频,防范人脸识别系统可能遭受的攻击,就需要应用人脸活体检测技术。...为了确保你是“活的你”,人脸活体检测通常包含几个鉴别步骤,比如眨眼判别:对于可以要求用户配合的应用系统,要求用户眨眼一到两次,人脸识别系统会根据自动判别得到的眼睛的张合状态的变化情况来区分照片和人脸;或者嘴部张合判别...人脸检测:定位人脸在哪里,检测活体过程中是否出现无人脸、多人脸的情况,可有效防止两个人的切换或人与照片的切换。 3D检测:验证采集到的是否为立体人像,能够防止平面照片、不同弯曲程度的照片等。...人脸活体检测通常包含的几个鉴别步骤,比如: 眨眼判别:对于可以要求用户配合的应用系统,要求用户眨眼一到两次,人脸活体检测系统会根据自动判别得到的眼睛的张合状态的变化情况来区分照片和人脸; 嘴部张合判别:
虽然研究者们为检测换脸图片提出了多种AI鉴别算法,但随着换脸算法的不断改造升级,鉴别算法很难跟上换脸算法的变化。 微软亚洲研究院团队近期提出的Face X-Ray算法或将改变这种局面。...此前的换脸鉴别方法主要从第二步入手,通过检测换脸过程中产生的瑕疵,确定图像的真伪,但是,这一瑕疵并不唯一确定,不同的换脸算法合成时造成的瑕疵大相径庭。 ?...因此,Face X-Ray 通过确定图像是否包含两种不同的噪声,就能判定一张人脸图像为合成图像的几率。...此前业内的主流换脸鉴别算法是训练 AI 分类器,让 AI 模型去“学习”大量的换脸图像,从而具有初步的鉴别能力。“先搜集一大堆换过脸的照片,再搜集一堆真照片,然后用深度神经网络做训练。...但二分类方法的局限在于不具备通用性:只有换脸图像采用的是已知换脸算法,如 DeepFake、FaceSwap、Face2Face 等生成,才有可能达到较高的识别率(99%以上),因为 AI 模型就是通过大量学习这些算法生成的人脸图像去提升识别能力
近期,针对DeepFake可能带来的负面影响,研究人员开发了一个基于神经网络的神奇,能够鉴别DeepFake图像的真伪。 DeepFake的克星,来了!...自从DeepFake诞生以来,从照片到视频,造假能力可谓是出神入化,人们惊呼:“再也不敢相信自己的眼睛了。”由此所带来的道德伦理与法律的影响也可见一斑。...针对这一现象,来自加州大学河滨分校的研究人员最近便提出了一种基于神经网络的神器,分分钟鉴别照片真伪! ?...鉴别DeepFake的真伪在科研中可以说是一种挑战,而这种挑战的出现是因为它以一种人类肉眼无法分辨的方式被操纵着。...下一步,DeepFake视频也将“在劫难逃” DeepFake的图像目前已然能够鉴别真伪,那么下一步就是视频了。 Roy-Chowdhury表示现在需要对算法做一个扩展,并应用到视频中。
图片 随着人脸识别技术日趋成熟,商业化应用愈加广泛,尤其是在金融行业,人脸识别技术已逐渐用于远程开户、取款、支付等,涉及用户的切身利益,然而人脸极易用照片、视频等方式进行复制,因此对合法用户人脸的假冒是人脸识别与认证系统安全的重要威胁...目前基于动态视频人脸活体检测、人脸眨眼与可见光人脸关联等领先业界的活体检测方法,已经取得了一定的进步。...人脸检测——定位人脸在哪里,检测活体过程中是否出现无人脸、多人脸的情况,可有效防止两个人的切换或人与照片的切换。...活体算法检测——为了确保你是“活的你”,人脸活体检测通常包含几个鉴别步骤,比如眨眼判别:对于可以要求用户配合的应用系统,要求用户眨眼一到两次,人脸识别系统会根据自动判别得到的眼睛的张合状态的变化情况来区分照片和人脸...而通过人脸识别与基于随机动作指令的人脸活体检测技术技术,非常好的解决了实名认证环节存在的风险与漏洞。 申明:文章由本人原创,禁止转载。
但是拍卖商不希望随意出售作品,所以他们雇了一名侦探来对画作辨别真伪。侦探手中有这幅名作的真迹,所以若是你随意拿出一个作品,侦探立刻就能知道你的画作是赝品(甚至完全不同)。...人脸合成 由于生成网络的存在,使得人脸合成成为了可能,这涉及到从不同角度生成单个人脸图像。 这就是为什么面部识别不需要数百个人脸样本,只需要用一个样本就能识别出来的原因。...每个生成器都有一个对应的鉴别器,该鉴别器试图将其合成的图像与真实图像区分开来。 CycleGAN的结果。...不仅如此,每个人都可以使用简单的交互式应用程序来创建自己的电影(甚至可以自己主演!)。 当然,技术是一把双刃剑。 若是这么好的技术被坏人利用,后果是不堪设想的。...目前,GAN已经被用于制作虚假视频或“Deepfakes”,这些视频正以消极的方式被使用着,例如生成名人假的不良视频或让人们在不知情的情况下“被发表言论”。
现有的人脸识别场景中,极易用照片、视频等方式复制人脸进而攻击,因此对合法用户人脸的假冒是人脸识别与认证系统安全的重要威胁,考虑到一旦虚假人脸攻击成功,极有可能对用户造成重大损失,因此势必需要为现有的人脸识别系统开发可靠...为了确保你是“活的你”,人脸活体检测通常包含几个鉴别步骤,比如眨眼判别:对于可以要求用户配合的应用系统,要求用户眨眼一到两次,人脸识别系统会根据自动判别得到的眼睛的张合状态的变化情况来区分照片和人脸;或者嘴部张合判别...1.人脸检测:定位人脸在哪里,检测活体过程中是否出现无人脸、多人脸的情况,可有效防止两个人的切换或人与照片的切换。2.3D检测:验证采集到的是否为立体人像,能够防止平面照片、不同弯曲程度的照片等。...人脸活体检测通常包含的几个鉴别步骤,比如:1. 眨眼判别:对于可以要求用户配合的应用系统,要求用户眨眼一到两次,人脸活体检测系统会根据自动判别得到的眼睛的张合状态的变化情况来区分照片和人脸;2....基于人脸识别场景中的防欺诈解决方案,人脸活体检测技术可以有效阻挡PS换脸、视频、三维人脸模型、高清人像照片等各种不同类型的攻击。
基于这样的背景,腾讯云正逐步打造相互协同、共同演进的AI大数据产品矩阵,推进大数据与AI在真实场景下的有效落地。...其中,AntiFakes假脸甄别技术基于图像算法和视觉AI技术,实现了对图片或视频中的人脸真伪进行高效快速的检测和分析,鉴别图片中的人脸是否为AI换脸算法、APP 所生成的假脸,最终对图像或视频的风险等级进行评估...在当前NLP领域的研究及落地应用中,为了达到更好的效果,预训练语言模型的使用已经成为一个很普遍的做法,但效果提升的同时也带来了模型训练成本的不断攀升,以目前行业较大规模的模型训练为例,用200G语料训练一个...3亿参数的bert模型,需要1400多张V100的GPU,训练500多分钟才能得到一个可用的模型,训练成本是非常高昂的。...在人脸识别方面,腾讯云神图新增人脸融合、人体识别以及跨年龄识别功能,语音合成正式商用、腾讯云NLP全新升级提供18项智能文本能力。
用户首先放置证件在手机NFC位置,1秒后产品完成证件内嵌关键信息的识别与读取,识别成功后进行刷脸认证,通过动作、光线等活体检测模式校验用户是否为真人,活体检测通过后可将视频最佳帧与权威库源/NFC读取的证件人像图进行人脸比对...银行远程开户为例,用户办理业务时需要确定该项动作为开户人本人的操作,采用“人脸核身(NFC版)”的认证方式,可以有效识别客户身份以及证件的真实、完整,满足客户全面了解用户的诉求,同时缩短了开户流程、改善了用户体验...而实证NFC安全产品的出现,一方面可以进一步阻挡黑产的侵入,助力业务方、业务办理者清晰证件真伪、识别欺诈;另一方面也在安全及用户业务体验上打造出均衡的产品服务。...腾讯云慧眼成为国检中心首批通过测评的人脸安全产品 | 困在流量池的视频博主们 | 看完这篇,我不再疯狂码字!| 错过等一年!...| 一场培训引发的“灵魂拷问” | 筑牢金融自主安全锁 | 点击下图可进入「腾讯云AI体验中心」免费体验
对图像中一些感兴趣的内容进行修饰、渲染处理,比如美颜相机中常见的人脸美化技术; 扭曲变形,将图像中的一些特定目标区域进行无规则的平移、旋转、拉伸等操作,产生局部扭曲或者畸变的效果,比如恶搞人脸视频中的夸张表情...添加特效:在基本不改变人脸面部关键特征的前提下,利用电影动画技术为面部赋予一些特定的表情和动作。 面部重构:通过一些先进的视频游戏技术将人脸图片重新渲染成3D动画人物。...辨别数字影像真伪也是一个技术活儿 众所周知,篡改的图片通常满足两个客观事实: 图像RGB数据上确定发生了局部变化; 在图像RGB数据上却无法直接找到这种局部变化的位置; 那么,数字时代的鉴别方法能做些什么呢...实际上,纸币水印[6]是利用一种带有凹凸图案的预制专用模具,通过改变纸浆纤维的密度实现的,透光性好的地方纸张纤维“稀”一点,透光性不好的地方纸张纤维“密”一点,从而呈现出具有较强立体感的图案。...对于数字时代的检测识别,虽然已经出现了很多有效的鉴别特征,但是它们大多数都只能应用于某些特定的场景,这自然是远远不够的。
假视频泛滥让信息真伪难辨,比如刻意伪造的假新闻,模仿领导人、权威专家的权威信息。数以亿计没有专业辨识能力的普罗大众会更容易轻信而被欺骗,引发更大的公信力危机。...对于社交媒体来说,如何合理地限制这类造假音视频内容的传播又不限制用户的使用体验? 这些问题的解决,仍然亟待AI技术本身先行给出一套检测和控制假视频的解决方案。...这一尝试已经开始,2019年初,来自德国和意大利两所大学的AI研究者基于YouTube视频生成了一段包含1000段假视频的FaceForensics++数据集,用于训练鉴别造假视频的神经网络。...研究者意识到,之前数据集中的视频存在着数量少、质量低以及过于人为化的特点;同时在一些假视频检测中,训练视频和测试视频存在高度相似性,这些让人脸造假检测的实际效力有待检验。...当然,最终结果也验证了质量好、数据量大、多样性高的数据集可以明显提高视频人脸伪造的基准测试结果。
领取专属 10元无门槛券
手把手带您无忧上云