首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

所谓好的用户体验

所谓好的用户体验 由 Ghostzhang 发表于 2012-07-16 19:20 怎样的用户体验才是好的用户体验呢?...好像有点跑题了,这次的思考是:并不是所有关注用户感受的体验就叫做是“好”的用户体验。 从何而来这想法呢?...上面的唠叨是一个引子,结果就是"不能赚钱的交互不是好交互",简单的说就是好的交互可以赚钱,可是不好的用户体验也是能赚钱的。...但是从商家的角度来说,我们需要考虑几个因素,第一个就是成本,这个是直接决定了能给用户提供最佳体验的上限到哪,好的椅子意味着更高的成本;其次是投入产出比,开门做生意,不为赚钱是很少的,投入越多,意味着盈利周期可能越长...麦当劳的椅子虽然用户体验不是最好的,但却是这么多年来产品与体验最好的平衡,从而实现利润的最大化。 当你再次遇到这种问题时,就知道如何处之泰然了。(本届 年会 的主题)

3.1K30

好的工作想法从哪里来

提出论点 好的研究想法,兼顾摘果子和啃骨头。...两年前,曾看过刘知远老师的一篇文章《好的研究想法从哪里来》,直到现在印象依然很深刻,文中分析了摘低垂果实容易,但也容易撞车,啃骨头难,但也可能是个不错的选择。...学生年代,作为老师的一个不成器弟子,学术上没有什么建树,幸运的毕了业。现如今到了工业界摸爬滚打,虽然换了个环境,但是发现生存的道理没变。 反面例子 不好的工作想法会加剧“卷”的用户体验。...这样的工作体验确实很糟糕。 我的触发点 沿着你造梦的方向先动手干起来。一年前刚开始决定做攻击者画像的时候,其实心里有底也没底。...引用 好的研究想法从哪里来 杜跃进:数据安全治理的基本思路 来都来了。

8.2K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Spark Streaming流式计算的WordCount入门

    Spark Streaming是一种近实时的流式计算模型,它将作业分解成一批一批的短小的批处理任务,然后并行计算,具有可扩展,高容错,高吞吐,实时性高等一系列优点,在某些场景可达到与Storm一样的处理程度或优于...storm,也可以无缝集成多重日志收集工具或队列中转器,比如常见的 kakfa,flume,redis,logstash等,计算完后的数据结果,也可以 存储到各种存储系统中,如HDFS,数据库等,一张简单的数据流图如下...ssc.awaitTermination() // 阻塞等待计算 } } 然后在对应的linux机器上,开一个nc服务,并写入一些数据: Java代码...nc -l 9999 a a a c c d d v v e p x x x x o 然后在控制台,可见计算结果,并且是排好序的: ?...至此,第一个体验流式计算的demo就入门了,后面我们还可以继续完善这个例子,比如从kakfa或者redis里面接受数据,然后存储到hbase,或者mysql或者solr,lucene,elasticsearch

    1.7K60

    聊聊我与流式计算的故事

    彼时,促销大战如火如荼,优惠券计算服务也成为艺龙促销业务中最重要的服务之一。 而优惠券计算服务正是采用当时大名鼎鼎的流式计算框架 Storm。...流式计算是利用分布式的思想和方法,对海量“流”式数据进行实时处理的系统,它源自对海量数据“时效”价值上的挖掘诉求。...我并不负责流式计算服务,但想要揭开 Storm 神秘面纱的探索欲,同时探寻优惠券计算服务为什么会这么慢的渴望,让我好几天晚上没睡好。...对于Storm 拓扑优化,我提了两点建议: 流式计算拓扑和酒店拉取服务各司其职,将流式计算中的网络 IO 请求挪到酒店拉取服务,将数据前置准备好; 基础配置缓存化,引入读写锁(也是 RocketMQ 名字服务的技巧...6 写到最后 2014年,我向前一步推动了公司流式计算服务的优化,并取得了一点点进步。

    2.7K20

    聊聊我与流式计算的故事

    彼时,促销大战如火如荼,优惠券计算服务也成为艺龙促销业务中最重要的服务之一。 而优惠券计算服务正是采用当时大名鼎鼎的流式计算框架 Storm。...流式计算是利用分布式的思想和方法,对海量“流”式数据进行实时处理的系统,它源自对海量数据“时效”价值上的挖掘诉求。...想要揭开 Storm 神秘面纱的探索欲,同时探寻优惠券计算服务为什么会这么慢的渴望,让我好几天晚上没睡好。 于是周六上午9点半, 我来到国家图书馆 ,想让自己安静下来,思考如何解决这个问题。...在阅读优惠券计算服务的代码中,我发现两个问题: 流式计算逻辑中有大量网络 IO 请求,主要是查询特定的酒店数据,用于后续计算; 每次计算时需要查询基础配置数据,它们都是从数据库中获取。...对于Storm 拓扑优化,我提了两点建议: 流式计算拓扑和酒店拉取服务各司其职,将流式计算中的网络 IO 请求挪到酒店拉取服务,将数据前置准备好; 基础配置缓存化,引入读写锁(也是 RocketMQ 名字服务的技巧

    2.6K30

    StreamingPro支持Flink的流式计算了

    前言 有的时候我们只要按条处理,追求实时性而非吞吐量的时候,类似Storm的模式就比较好了。...Spark 在流式处理一直缺乏改进,而Flink在流式方面做得很棒,两者高层的API也是互相借鉴,容易形成统一的感官,所以决定让StreamingPro适配Flink,让其作为StreamingPro底层的流式引擎...StreamingPro自身设计之初就是为了支持多引擎的,所以改造成本很低,昨天花了一下午,晚上加了会班就重构完了。这次增强可以让我司的流式引擎有了新的选择。...准备工作 下载安装包 为了跑起来,你需要下载一个flink的包,我用的是1.2.0版本的。...WX20170321-104738@2x.png 后面的话 Flink目前在流式计算上对SQL支持有限,暂时还不支持Join,Agg等行为操作,这个和Spark相比较而言差距还比较大。

    1.2K30

    Flink 从实时计算到流式数仓,下一步去往哪里?

    又是如何解决的?Flink 最终又会走向哪里呢?...张蛟:目前来看,经过这些年的发展,Flink 在实时计算方面实际上已经成为了事实上的标准,目前已有功能已经可以基本上解决所有场景的实时计算需求。...因此,下一步 Flink 的发力点可能有: 发力离线计算领域 完全统一计算框架,甚至实现用户可以完全不用区分实时和离线计算的场景,减少用户的学习成本和底层开发人员和公司维护两套框架的运维成本。...总的来说,我个人认为 Flink 不会满足于在实时计算领域取得的成就,会有更多更好用的功能持续推出,并促进整个社区的不断发展。 InfoQ:你如何看待最新提出的流式数仓这个概念?...张蛟:流式数仓主要是为了解决在数仓开发中的离线和实时一体化问题,目前绝大多数的数仓开发依然还是在使用 Lambda 架构,也就是通过实时链路产生实时数据用于解决实时性需求比较高的在线分析场景,而采用离线链路对历史数据进行修正以保证数据的正确性和完整性

    73320

    可编程的流式计算框架:YoMo

    文 / 洪小坚 整理 / LiveVideoStack 大家好,今天分享的主题是可编程的流式计算框架。大家可能都比较关心音视频领域,我们YoMo面对的场景比较偏向工业、IoT等领域。...回过头看看目前业内一些主流的技术,说到实时流式计算就会联想到像Flink这种、消息队列会想到Kafka。...要做到这样的操作,还需要在1s内做到30次的计算,一次大约为33ms。如果这个计算节点部署在云计算中心,那么光数据的传输可能就已经超过该时限了。...到IoT时代因为数据量的巨大,需要边缘端进行分布式来缓解云计算中心的压力。边缘计算虽然越来越重要,但是边缘计算并不会取代云计算,他们会共同存在。 边缘计算的优势一是降低传输距离。...云计算和边缘计算的对比发现,云计算的性能更强但时延、带宽成本较高,边缘计算恰恰相反。云计算和边缘计算在使用上互补,以满足不同场景的使用需求。

    1.4K30

    基于HTTP流式传输的长时响应体验提升

    在我们应用开发中偶尔遇到某个请求需要后端进行大量计算的情况,这种情况下,按照传统的前后端协同方式,前端需要等待后端慢慢计算,会放一个loading效果,而长时间的loading对用户的体验并不友好,而如果后端采用异步方式...HTTP流式传输 这里的流式传输是指借鉴流媒体技术,在数据传输中实现持续可用的不间断的传输效果。...流式传输可以依赖http, rtmp, rtcp, udp...等等网络协议,在本文的场景下,我们主要探讨的是HTTP流式传输。...针对这一场景,我们采用流式传输的方法,可以让列表可以逐条渲染或更新,从而可以让用户在较快的时间里,获得前面的数据。而这种流式传输,现在已经在前端被广泛使用,甚至被某些框架作为其架构的底层选型。...打字机效果,例如实时翻译字幕、ChatGPT的回复 用户提交后需要大量计算,可以先返回一个chunk,让前端提示用户已经成功,等计算完再返回真正的chunk,更新界面数据 古老的聊天室,在服务端,当收到别人发送的消息时

    3.8K20

    实时流式计算系统中的几个陷阱

    05:00:03'),('05:00:01','05:00:05'), ('05:00:02','05:00:05'),('05:00:02',' 05:00:05') 现在,我们假设有一个程序可以计算每秒接收到的事件数...队列中的数据由其他服务生成,例如消费者应用程序的点击流或数据库的日志。 问题队列容易受到延迟的影响。...因此,您需要考虑以下内容- 那一秒钟的数据将存储在哪里? 如果1秒不是固定的延迟,并且在最坏的情况下不规则地增加到10分钟怎么办? Key C —值C比值C'晚4秒钟到达。...您的配置有多大? 如果配置很大,则仅当配置可以拆分到多个服务器时才应使用应用程序内状态,例如,一个配置为每个用户保留一些阈值。可以基于用户ID密钥将这样的配置拆分到多台计算机上。...重要的部分是了解数据流的基础知识以及如何处理单个流,然后转到处理多个联接,实时配置更新等的复杂应用程序。 更多实时数据分析相关博文与科技资讯,欢迎关注 “实时流式计算”

    1.3K30

    Oceanus的实时流式计算实践与优化

    在大数据技术的不断发展的过程中,Flink已经成为实时计算的工业标准,越来越多的公司正在使用 Flink作为自己实时计算的工具。...本文由腾讯云实时计算Oceanus专家工程师杜立在 Techo TVP开发者峰会「数据的冰与火之歌——从在线数据库技术,到海量数据分析技术」 的《实时流式计算实践与优化》演讲分享整理而成,为大家详尽介绍在使用...点击可观看精彩演讲视频 一、腾讯云流计算服务 今天的内容主要分两大部分:第一部分向大家快速介绍现在腾讯云上流式计算服务的基本情况,后一个较大的重点分为三个部分——我们在实时的业务过程中针对Flink...目前整个实时计算的计算规模已经超过了3万核,每天的数据接入量超过5PB,日实时计算量超过50万/次,而且这个规模还在不断地增长。...扫码立即参会赢好礼?

    2.3K20

    实时流式计算系统中的几个陷阱

    05:00: 03'),('05:00:01','05:00:05'), ('05:00:02','05:00:05'),('05:00:02',' 05:00:05') 现在,我们假设有一个程序可以计算每秒接收到的事件数...队列中的数据由其他服务生成,例如消费者应用程序的点击流或数据库的日志。 问题队列容易受到延迟的影响。...即使在几十毫秒内,生成的事件也可能到达您的工作中,或者在最坏的情况下可能会花费一个多小时(极高的背压)。...因此,您需要考虑以下内容- 那一秒钟的数据将存储在哪里? 如果1秒不是固定的延迟,并且在最坏的情况下不规则地增加到10分钟怎么办? Key C —值C比值C'晚4秒钟到达。...您的配置有多大? 如果配置很大,则仅当配置可以拆分到多个服务器时才应使用应用程序内状态,例如,一个配置为每个用户保留一些阈值。可以基于用户ID密钥将这样的配置拆分到多台计算机上。

    1.5K40

    流式计算的代表:Storm、Flink、Spark Streaming

    Flink 对存储在磁盘上的数据进行大规模计算处理,大数据批处理 对实时产生的大规模数据进行处理,大数据流计算 1....Spark Streaming Spark Streaming 巧妙地利用了 Spark 的分片和快速计算的特性,将实时传输进来的数据按照时间进行分段,把一段时间传输进来的数据合并在一起,当作一批数据,...Spark Streaming 主要负责 将流数据转换成小的批数据,剩下的交给 Spark 去做 3....Flink 既可以 流处理,也可以 批处理 初始化相应的执行环境 在数据流或数据集上执行数据转换操作 流计算就是将 大规模实时计算的 资源管理 和 数据流转 都统一管理起来 开发者只要开发 针对小数据量的...数据处理逻辑,然后部署到 流计算平台上,就可以对 大规模数据 进行 流式计算了

    1.2K20

    【Python系列】浅析流式模式:基于 SSE 的实时响应体验

    在现代 Web 应用开发中,用户体验的优化是一个非常重要的目标,尤其是在涉及到实时数据更新的场景下。...这种方式通过 Server-Sent Events (SSE) 技术实现,带来了独特的用户体验。 什么是流式模式? 流式模式,顾名思义,即通过流的方式持续发送数据而不是一次性全部返回。...而在流式模式下,服务器会逐步发送数据,客户端可以立即将接收到的数据呈现在用户面前,产生一种“打字机”式的输出效果。这种方式显著提升了用户的等待体验,并让应用表现更加动态化和富有生命力。...聊天应用:在即时通讯应用中,流式模式使得聊天消息可以即时到达,提升了聊天体验。 新闻推送:对于新闻网站或信息流应用,SSE 能够即时向用户推送最新内容,提升用户粘性。...然而,对于纯粹的服务器到客户端的数据推送需求,SSE 更加轻量和高效。 流式模式的未来展望 随着前端技术的发展和用户对实时体验的需求不断增加,流式模式的应用将越来越广泛。

    22110

    flink流式计算双色球的最小得奖

    上网时,经常听到别人讨论说,彩票是8点钟禁售,9点15分开奖,很多人都会想,这一个半时内,福彩中心会不会算一个最小人买的彩票呢。 刚好,最近在学买流式计算,尝试着用这个来算一下最小得奖。...人员架构.jpg 算法: 如何用最简单的办法,算出哪一注是最小人买 的呢。...,统计出现最小的彩票 这样彩票的统计就变成统计最小的词频,这个统计词频的例子在flink里就有了。...exception " + exception); } } }); producer.close(); } } 流式计算统计最小复奖...(选20秒是因为上游窗口每20s计算一轮数据,topN窗口一次计算只统计一个窗口时间内的变化) .process(new TopNAllFunction(1));//计算该窗口

    96640

    不动程序的设计,不是好的用户体验师

    发现问题 前期做规范的过程是十分痛苦的,每做一个板块都要花很多时间去思考怎么表达、展示才能让其他设计师和程序员都一目了,然而随着内容的增加,发现很多地方无法深入的执行下去,只能含糊其辞,给我们制作规范的人员带来了很大苦恼...为什么有如此大的执行阻碍呢?带着问题我们找到团队的一位设计前辈请教了一番,在前辈的指点下,终于发现了问题所在:我们对于前端如何实现设计稿其实并没有很好的了解。...图1-1是XX项目的所有关于二级导航的样式,因为这一块的界面不是我做的(都是借口),所以规范不太了解,导致在做整个项目的规范时,遇到了极大的阻碍。...标明颜色后,我们可以清晰看出,原来这个导航是平均分成了3等分(红绿蓝),只不过将绿色分割成两半放在左右两边,这样我们就可以根据整条导航的长度计算出每块区域的长度,不论是开发还是设计师都可以一目了然并且明白其中的设计规则...而第一个容器内的绿色和蓝色部分(间距)也是固定的,所以只有红色区域是可变化的,因为红色区域的文字个数是可以变化的,我们只要给出字体大小即可。

    3.5K50

    【学术分享】刘知远:好的研究想法从哪里来

    从自己十多年研究经历来看,如何判断一个研究想法好不好,以及这些研究想法从哪里来,对于初学者而言的确是个难题。所以,简单攒了这篇小短文,分享一些经验和想法,希望对刚进入NLP领域的新同学有用。...而计算机领域流行着一句话“IDEA is cheap, show me the code”,也说明对于重视实践的计算机学科而言,想法的好坏还取决于它的实际效能。这里就来谈下好的研究想法从哪里来。...那么什么才是好的想法呢?我理解这个”好“字,至少有两个层面的意义。 学科发展角度的”好“ 学术研究本质是对未知领域的探索,是对开放问题的答案的追寻。...好的研究想法从哪里来 想法好还是不好,并不是非黑即白的二分问题,而是像光谱一样呈连续分布,因时而异,因人而宜。...那么,好的研究想法从哪里来呢?我总结,首先要有区分研究想法好与不好的能力,这需要深入全面了解所在研究方向的历史与现状,具体就是对学科文献的全面掌握。

    8.5K20

    揭秘流式计算引擎Flink中的时间窗口机制

    前言 数据,已经渗透到当今各行各业的价值创造过程中,成为核心生产要素之一。海量数据的挖掘和运用,已经初见成效。各大厂也在不断尝试用新的流式计算框架来对数据进行处理。...Flink以流为核心,构建出了高性能、高可用的批流一体的分布式大数据计算引擎,在数据流上提供数据分发、通信、具备容错能力的分布式计算功能。...目前,Flink以流式计算引擎为基础,同样也支持批处理,并且提供了SQL、复杂事件处理CEP、机器学习、图计算等更高级的数据处理场景。...流式处理系统长期以来一直应用在提供低延迟、不准确/近似结果的场景里,通常结合批处理系统来提供最终正确的结果。而流批一体计算的设计核心,就是窗口。...处理时间(Processing Time):消息被计算引擎处理的时间,以各个计算节点的本地时间为准。

    77630

    如何培育好的内部开发者平台体验

    如何培育好的内部开发者平台体验 伦敦——Syntasso 的首席工程师 Abigail Bangser 在本周的 State of Open Con 上说,“应用程序开发人员希望快速行动,而运维工程师希望安全行动...“如果你想建立一个真正伟大的平台工程开发者体验,这需要你将其视为一个整体的社会技术挑战。”...她对平台工程的定义归结为构建、维护和提供“为所有使用它的社区精心策划的平台体验”,这会影响所有不断发展的技术、社会和团队结构。 一个好的平台建立边界。...然后查看已经在运行的工具——Slack、Jira、Trello——并开始跟踪临时请求。什么是最频繁、最困难、最耗时的?您的应用程序团队的辛劳在哪里?...“你想让你的团队更接近平台,与平台互动。做到这一点的一个好方法是提供他们需要的文档和参考实施,”Watt 说。 不要忘记提供平台工程体验的专业服务方面。

    12210
    领券