小刘,服务器这会好卡,是不是出了什么问题啊,你看能不能做个监控大屏实时查看机器的运行情况?
Flink Forward是由Apache官方授权,用于介绍Flink社区的最新动态、发展计划以及Flink相关的生产实践经验的会议。2018年12月20日,Flink Forward首次来到中国举办。腾讯TEG数据平台部参加了会议并在会上介绍了腾讯内部基于Flink打造的一站式实时计算平台Oceanus。 一、背景介绍 TEG实时计算团队作为腾讯内部最大的实时数据服务部门,为业务部门提供高效、稳定和易用的实时数据服务。其每秒接入的数据峰值达到了2.1亿条,每天接入的数据量达到了17万亿条,每天的数据增长
AI 前线导读:有赞是一个商家服务公司,提供全行业全场景的电商解决方案。在有赞,大量的业务场景依赖对实时数据的处理,作为一类基础技术组件,服务着有赞内部几十个业务产品,几百个实时计算任务,其中包括交易数据大屏,商品实时统计分析,日志平台,调用链,风控等多个业务场景,本文将介绍有赞实时计算当前的发展历程和当前的实时计算技术架构。
备注:Table & SQL API通过Apache Calcite进行SQL解析,并转换成Calcite执行计划,最终调用Flink DataStream/DataSet API。
Spark Streaming,其实就是一种Spark提供的,对于大数据,进行实时计算的一种框架。它的底层,其实,也是基于我们之前讲解的Spark Core的。基本的计算模型,还是基于内存的大数据实时计算模型。而且,它的底层的组件,其实还是最核心的RDD。 只不过,针对实时计算的特点,在RDD之上,进行了一层封装,叫做DStream。其实,学过了Spark SQL之后,你理解这种封装就容易了。之前学习Spark SQL是不是也是发现,它针对数据查询这种应用,提供了一种基于RDD之上的全新概念,DataFrame,但是,其底层还是基于RDD的。所以,RDD是整个Spark技术生态中的核心。要学好Spark在交互式查询、实时计算上的应用技术和框架,首先必须学好Spark核心编程,也就是Spark Core。 这节课,作为Spark Streaming的第一节课,我们先,给大家讲解一下,什么是大数据实时计算?然后下节课,再来看看Spark Streaming针对实时计算的场景,它的基本工作原理是什么??
作者 | 梁李印,滴滴出行大数据架构部技术专家。梁李印将于5月18-19日在上海A2M峰会分享《滴滴实时计算平台架构与实践》话题,更多峰会议题请至A2M峰会官网查看,点击底部阅读原文可直达官网。
所谓实时流计算,就是近几年由于数据得到广泛应用之后,在数据持久性建模不满足现状的情况下,急需数据流的瞬时建模或者计算处理。这种实时计算的应用实例有金融服务、网络监控、电信数据管理、 Web 应用、生产制造、传感检测,等等。在这种数据流模型中,单独的数据单元可能是相关的元组(Tuple),如网络测量、呼叫记录、网页访问等产生的数据。但是,这些数据以大量、快速、时变(可能是不可预知)的数据流持续到达,由此产生了一些基础性的新的研究问题——实时计算。实时计算的一个重要方向就是实时流计算。
摘要:本文整理自中泰证券大数据中心实时计算平台架构师连序全,在 Flink Forward Asia 2022 行业案例专场的分享。本篇内容主要分为四个部分:
本文介绍了如何利用Apache Spark技术栈进行实时数据流分析,并通过可视化技术将分析结果实时展示。我们将使用Spark Streaming进行数据流处理,结合常见的数据处理和可视化库,实现实时的数据流分析和可视化展示。本文包括了数据流处理、实时计算、可视化展示三个主要步骤,并提供相应的代码示例和技术细节。
实时计算的输出内容,以及提供的分析能力:OLAP 分析,key-value 实时数据服务,维度填充,数据打标等。
对于技术人来说,最可怕的事在于:当技术每天都在更新,自己却没有学习的机会,于是轻易被抛弃……
场主认为:Flink=风口趋势所在!而技术人就是追风的人,stay hungry,stay young!
MES 是马蜂窝统一实时计算平台,为各条业务线提供稳定、高效的实时数据计算和查询服务。在整体设计方面,MES 借鉴了 Lambda 架构的思想。本篇文章,我们将从四个方面了解 MES:
一方面互联网行业对实时化服务的要求日益增多,尤其在信息流,短视频应用最为显著,同时随着实时技术引擎的发展能够提供高效,稳定的实时数据服务能力。另一方面初期实时计算都是以需求为导向,采用"一路到底"的开发模式,没有形成完整的,统一的,规范化的实时数据体系。
本次演讲主要是和大家分享一下实时计算在滴滴的应用场景和一些实践。 滴滴大数据体系 滴滴大数据体系的主要特点在于数据都是实时的,数据采集可以采集到90%以上的数据。我们的数据来源一共有三类,一类是Bin
摘要:数据仓库的建设是“数据智能”必不可少的一环,也是大规模数据应用中必然面临的挑战,而 Flink 实时数仓在数据链路中扮演着极为重要的角色。本文中,美团点评高级技术专家鲁昊为大家分享了美团点评基于 Apache Flink 的实时数仓平台实践。
vivo 实时计算平台是 vivo 实时团队基于 Apache Flink 计算引擎自研的覆盖实时流数据接入、开发、部署、运维和运营全流程的一站式数据建设与治理平台。
摘要:本文由贝壳找房实时计算负责人刘力云分享,主要内容为 Apache Flink 在贝壳找房业务中的应用,分为以下三方面:
在过去的这几年时间里,以 Storm、Spark、Flink 为代表的实时计算技术接踵而至。2019 年阿里巴巴内部 Flink 正式开源。整个实时计算领域风起云涌,一些普通的开发者因为业务需要或者个人兴趣开始接触Flink。
做大数据绝对躲不过的一个热门话题就是实时流计算,而提到实时流计算,就是Spark 和 Flink两面大旗。
接下来,我们是要讲解商品详情页缓存架构,缓存预热和解决方案,缓存预热可能导致整个系统崩溃的问题以及解决方案;
flume,版本1.7.0,主要用来从业务系统收集数据以及从jms收集数据。
数据时代,从数据中获取业务需要的信息才能创造价值,这类工作就需要计算框架来完成。传统的数据处理流程中,总是先收集数据,然后将数据放到DB中。当人们需要的时候通过DB对数据做query,得到答案或进行相关的处理。这样看起来虽然非常合理,但是结果却非常紧凑,尤其是在一些实时搜索应用环境中的某些具体问题,类似于MapReduce方式的离线处理并不能很好地解决。 基于此,一种新的数据计算结构---流计算方式出现了,它可以很好地对大规模流动数据在不断变化的运动过程中实时地进行分析,捕捉到可能有用的信息,并把结果发送
阅读目录: 实时计算 storm简介 流式计算 归纳总结 高容错性 实时计算 接上篇,离线计算是对已经入库的数据进行计算,在查询时对批量数据进行检索、磁盘读取展示。 而实时计算是在数据产生时就对其进行计算,然后实时展示结果,一般是秒级。 举个例子来说,如果有个大型网站,要实时统计用户的搜索内容,这样就能计算出热点新闻及突发事件了。 按照以前离线计算的做法是不能满足的,需要使用到实时计算。 小明作为有理想、有追求的程序员开始设计其解决方案了,主要分三部分。 每当搜索内容的数据产生时,先把数据收集到消息队列,由
阿里妹导读:今年的双11,实时计算处理的流量洪峰创纪录地达到了每秒40亿条的记录,数据体量也达到了惊人的每秒7TB,基于Flink的流批一体数据应用开始在阿里巴巴最核心的数据业务场景崭露头角,并在稳定性、性能和效率方面都经受住了严苛的生产考验。本文深度解析“流批一体”在阿里核心数据场景首次落地的实践经验,回顾“流批一体”大数据处理技术的发展历程。
原始视频视频资源已经在优酷公开:2018.8.11 Flink China Meetup·北京站-Flink在美团的应用与实践
将实时输入的数据流以时间片(秒级)为单位进行拆分,然后经过Spark引擎之后,以类似批处理的方式处理每个时间片的数据。
互联网和移动互联网技术开启了大规模生产、分享和应用数据的大数据时代。面对如此庞大规模的数据,如何存储?如何计算?各大互联网巨头都进行了探索。Google的三篇论文 GFS(2003),MapReduce(2004),Bigtable(2006)为大数据技术奠定了理论基础。随后,基于这三篇论文的开源实现Hadoop被各个互联网公司广泛使用。在此过程中,无数互联网工程师基于自己的实践,不断完善和丰富Hadoop技术生态。经过十几年的发展,如今的大数据技术生态已相对成熟,围绕大数据应用搭建的平台架构和技术选型也逐渐趋向统一。
友盟数据平台负责人 吴磊 移动互联网的无处不在催熟了大数据平台,而中国互联网正在面临从IT时代到DT时代的变革,移动互联网与大数据几乎是一种相生相伴的关系。回归到App研发,到后期尤其需要数据与运营。友盟从2010年开始就专注于移动大数据,5年来不仅积累了大量的数据,而且拥有着丰富的技术与经验,那么,友盟大数据平台有着怎样的架构与实践?今天在这里与大家分享一下。 一、架构 架构思想 友盟架构主要参考了Twitter提出的Lambda架构思想。如上图所示,最下面是快速处理层,新增数据在快速处理层计算,这部
最近事情较多,因为临近年底,在做总结和后续规划,在这一年中,数据开发方向仍然在快速发展,新概念和新技术层出不穷。
数据仓库大家非常熟悉,在1991年出版的“Building the Data Warehouse”,数据仓库之父比尔·恩门首次提出数据仓库的概念,数据仓库是一个面向主题的,集成的,相对稳定的,反映历史变化的数据集合,用于支持管理决策。
小米从 2019 年开始引入 Flink 并处理实时计算相关的需求,从第一个接入的版本 1.7 到最新的 1.14,累计已升级更新了 6 个大的版本,目前已接入包括数据采集、信息流广告、搜索推荐、用户画像、金融等在内的全集团所有业务线的 3000+ 任务,日均处理 10 万亿 + 的消息,并在国内外搭建了 10+ 集群。
接上篇,离线计算是对已经入库的数据进行计算,在查询时对批量数据进行检索、磁盘读取展示。 而实时计算是在数据产生时就对其进行计算,然后实时展示结果,一般是秒级。 举个例子来说,如果有个大型网站,要实时统计用户的搜索内容,这样就能计算出热点新闻及突发事件了。 按照以前离线计算的做法是不能满足的,需要使用到实时计算。
互联网到移动互联网最大的变化莫过于用户“随时随地”地接入互联网。不过,还有一点正在悄悄发生的是,“内容和服务的实时性”正在变得重要起来。 一、实时直播 中秋节,百度联合国家天文台在北京、台北、拉萨、
作者|吴建阳 翁建清 策划|褚杏娟 AWS Elastic MapReduce(以下简称 EMR) 是集齐数据接入、存储、计算、交互式查询、机器学习等一系列开源社区组件封装的云上托管大数据平台,用户可以基于 EMR 迅速拉起一套大数据集群,用于大规模数据处理、分析,使用时可根据实际业务所需灵活调配计算资源,一定程度上降低底层基础设施运维成本。AWS 是最早将大数据管理平台上云的云厂商,查询其官网发行版本记录,能检索到的最古老版本 EMR-4.2.0 发布日期为 2015 年 11 月 18 日,当是时
过去的十年是数据处理变革的十年, MapReduce, Hadoop以及一些相关的技术使得我们能处理的数据量比以前要大得多得多。但是这些数据处理技术都不是实时的系统 — 它们设计的目的也不是为了实时计算。没有什么办法可以简单地把hadoop变成一个实时计算系统。实时数据处理系统和批量数据处理系统在需求上有着本质的差别。
1. 摘要: TDW很好的解决了海量数据离线处理问题,但是在如下场景下:实时报表,实时监控,实时推荐,实时分析,TDW无法满足需求。而storm是应对这些场景的利器,但是storm开发的门槛较高,对于大多数使用TDW的同学来说,若是能有一套支持storm的SQL,想必那是极好的。故此本宫,不,本团队开发了EasyCount以飧大众。 EasyCount使用SQL描述业务的实时计算的需求,并将SQL转化为基于storm的topology。相对于传统SQL,实时SQL面临诸多挑战,EasyCount通过不同的方
Lambda架构设计目的在于提供一个满足大数据系统关键特性的架构。整合离线计算和实时计算,融合不可变性、读写分离和复杂性隔离等原则。
作为互联网公司,网站监测日志当然是数据的最大来源。我们目前的规模也不大,每天的日志量大约1TB。后续90%以上的业务都是需要基于日志来完 成,之前,业务中对实时的要求并不高,最多也就是准实时(延迟半小时以上),因此,我们使用Flume将数据收集到HDFS,然后进行清洗和分析。
摘要:本文由网易 Java 技术专家吴良波分享,主要内容为 Apache Flink 在网易的实践,文章提纲如下:
无限数据指的是,一种不断增长的,基本上无限的数据集。这些通常被称为“流数据”,而与之相对的是有限的数据集。 无界数据处理,一种持续的数据处理模式,能够通过处理引擎重复的去处理上面的无限数据,是能够突破有限数据处理引擎的瓶颈的。 低延迟,延迟是多少并没有明确的定义。但我们都知道数据的价值将随着时间的流逝降低,时效性将是需要持续解决的问题。
实时流式计算,也就是RealTime,Streaming,Analyse,在不同的领域有不同的定义,这里我们说的是大数据领域的实时流式计算。
有赞使用storm已经有将近3年时间,稳定支撑着实时统计、数据同步、对账、监控、风控等业务。订单实时统计是其中一个典型的业务,对数据准确性、性能等方面都有较高要求,也是上线时间最久的一个实时计算应用。通过订单实时统计,描述使用storm时,遇到的准确性、性能、可靠性等方面的问题。 订单实时统计的演进 第一版:流程走通 在使用storm之前,显示实时统计数据一般有两种方案: 在数据库里执行count、sum等聚合查询,是简单快速的实现方案,但容易出现慢查询。 在业务代码里对统计指标做累加,可以满足指标的快速查
一、可以帮助我们解决什么问题 现在不管是在国内外的大公司,对于大数据都是非常的渴望,会想尽所有的办法搜集一切的数据,由于现代信息的不对称从而导致不断的数据变化,大量的信息是可以通过数据分析获取
领取专属 10元无门槛券
手把手带您无忧上云