提出论点 好的研究想法,兼顾摘果子和啃骨头。...两年前,曾看过刘知远老师的一篇文章《好的研究想法从哪里来》,直到现在印象依然很深刻,文中分析了摘低垂果实容易,但也容易撞车,啃骨头难,但也可能是个不错的选择。...初入团队,寻找自己的立足点,需要一个好的工作想法。每年末,抓耳挠腮做规划,想要憋出一个好的工作想法。很多同学,包括我自己,陆陆续续零零散散想到很多点,然后自己不断否掉。...人的三维+时间半维 具体如何找到好的想法,一时半会没有头绪。因此,回到最初的起点,从人的层面,我有什么?我想要有什么?...引用 好的研究想法从哪里来 杜跃进:数据安全治理的基本思路 来都来了。
作为最传统的数据应用之一,数据仓库在企业内部扮演着重要的角色,构建并正确配置好数据仓库,对于数据分析工作至关重要。...一个设计良好的数据仓库,可以让数据分析师们如鱼得水;否则可能使企业陷入无休止的问题之中,并在未来的企业竞争中处于劣势。 随着越来越多的基础设施往云端迁移,数据仓库是否也需要上云?...本文部分内容参考了MIT大学教授David J.DeWitt的演讲材料。 一、数据仓库建设 数据仓库(DW)的建设方式有很多种,企业可以根据自身需求进行选择。...二、云端数据仓库 2.1 云方案优势 基于上面的说明,采用数据仓库的云服务,具有较多优势,包括: 更好的性价比(无论是前期购买、还是后期运营) 更快的交付速度(最快在分钟级) 更优的弹性能力(扩展或压缩...支持从Google云端加载或直接访问,也可以导入数据流。其没有索引,除了数据管理外,几乎不需要维护。 作者:韩锋 首发于作者个人公号《韩锋频道》。 来源:宜信技术学院
根据最近的信息,著名的创业公司,云端数据仓库提供者Snowflake经过最近一轮的融资,其市值已经达到120亿了。这是一个很多创业公司上市之后都很难达到的高度。...简单来说,Snowflake作为一个在不同的云上都能跑起来的,企业级数据仓库,在成本和安全性上都有其优势。...既可以避免企业lock-in到一个特定的数据仓库里(比如Redshift或者BigQuery),又提供了云端的数据仓库解决方案。...Snowflake的元数据层基于fundationalDB实现,对企业市场来说,security和governance是和性能一样重要的东西,Snowflake这方面做的就相当的好。...只不过Hadoop的架构本身太基于文件层了,尤其是权限的管控方面,看起来不像是一个数仓的样子。而其上面的查询引擎的效率,一直都值得打个问号。 目前为止,成功的云端数据仓库基本上都是c++写的。
它是用于完善工艺方案和模具繁杂型面的设计,专门针对汽车和金属成形中的板料成形而开发和优化的。全球大概有九成的汽车制造商用它来进行产品开发、完善工艺。...它将全球各地的方法经验吸收融合,来确保有最新的技术支持。...据网上统计,在薄板冲压成型仿真方面,当前autoform软件市场在全球的占比是排第一的有90%以上的汽车制造商在使用autoform,全球前20家的汽车制造商全都在使用在国内,autoform软件也是有非常多的行业用户...(2)适合设计复杂的深拉延和拉伸成形模、工艺和模面的验证,优化成形参数,最大化减少材料与润滑剂损耗,新板料的评估和改进(4)快速实现求解、简单好用的界面和快速上手、对复杂的工程也有稳当的结果。...我们没必要使用大量硬件和专门的模拟分析师傅,直接能用autoform软件完成模拟。它高质量的结果可以减少产品的开发验证时间,降低开发成本,提高产品质量,给公司带来非常大的竞争优势和市场机遇。
从自己十多年研究经历来看,如何判断一个研究想法好不好,以及这些研究想法从哪里来,对于初学者而言的确是个难题。所以,简单攒了这篇小短文,分享一些经验和想法,希望对刚进入NLP领域的新同学有用。...而计算机领域流行着一句话“IDEA is cheap, show me the code”,也说明对于重视实践的计算机学科而言,想法的好坏还取决于它的实际效能。这里就来谈下好的研究想法从哪里来。...那么什么才是好的想法呢?我理解这个”好“字,至少有两个层面的意义。 学科发展角度的”好“ 学术研究本质是对未知领域的探索,是对开放问题的答案的追寻。...好的研究想法从哪里来 想法好还是不好,并不是非黑即白的二分问题,而是像光谱一样呈连续分布,因时而异,因人而宜。...那么,好的研究想法从哪里来呢?我总结,首先要有区分研究想法好与不好的能力,这需要深入全面了解所在研究方向的历史与现状,具体就是对学科文献的全面掌握。
这里很有可能的主要原因就是没有命中索引和没有分页处理(原因有很多种,主要分析你的日志)。那接下来我们就得去优化sql了。 **如何优化呢?下面我们来谈谈有关的问题。...三、索引优化,这个经常谈到 索引的分类有哪些? 1 普通索引:最基本的索引 2 组合索引:多个字段上建立的索引,能够加速复合查询条件的检索。...3 唯一索引:与普通索引类似,但索引列的值必须唯一,允许有空值 4 组合唯一索引:列值的组合必须唯一 5 主键索引:特殊的唯一索引,用于唯一标识数据表中的某一条记录,不允许有空值,一般用primary...被驱动表的join字段上加上索引,无法建立索引的时候,设置足够的Join Buffer Size。 禁止join连接三个以上的表,尝试增加冗余字段。...只好用游标了,感兴趣的朋友阅读JDBC使用游标实现分页查询的方法
我六月底参加深圳的一个线下技术活动,某在线编程的 CEO 谈到他们公司的发版,说:“我说话的这会儿,我们可能就有新版本在发布。”,这句话令我印象深刻。...传统的单体应用,所有的功能模块都写在一起,有的模块是 CPU 运算密集型的,有的模块则是对内存需求更大的,这些模块的代码写在一起,部署的时候,我们只能选择 CPU 运算更强,内存更大的机器,如果采用了了微服务架构...可以灵活的采用最新技术 传统的单体应用一个非常大的弊端就是技术栈升级非常麻烦,这也是为什么你经常会见到用 10 年前的技术栈做的项目,现在还需要继续开发维护。...服务的拆分 个人觉得,这是最大的挑战,我了解到一些公司做微服务,但是服务拆分的乱七八糟。这样到后期越搞越乱,越搞越麻烦,你可能会觉得微服务真坑爹,后悔当初信了说微服务好的鬼话。...这个段子形象的说明了分布式系统带来的挑战。
对于想要在网络上建设网站的用户而言,首先需要为网站购买一个合法的域名,不过很多人对于购买域名并没有实际的经验,因此往往不知道在哪里才能买到需要的域名。那么买域名哪里好?域名供应商的选择标准是什么?...买域名哪里好呢 域名是外部用户访问用户网站的地址,只有准确的地址才能够让别人进入自己的网站,并且域名和网址并不是相等的关系,域名需要经过解析才能够获得网址。...域名的选择标准 很多人在网络上查找后会发现,提供域名的域名供应商在网络上是非常多的,那么买域名哪里好?域名供应商如何来选择呢?...其实有心的用户会发现,网络上的域名供应商虽然多,但不少域名供应商的都只是代理的性质,所提供的域名种类相对比较少,因此在选择域名供应商时应当尽量挑选那些一级域名商,这样可以选择的域名种类会更加丰富。...买域名哪里好?如何挑选域名供应商?
从自己十多年研究经历来看,如何判断一个研究想法好不好,以及这些研究想法从哪里来,对于初学者而言的确是个难题。所以,简单攒了这篇小短文,分享一些经验和想法,希望对刚进入NLP领域的新同学有用。...而计算机领域流行着一句话“IDEA is cheap, show me the code”,也说明对于重视实践的计算机学科而言,想法的好坏还取决于它的实际效能。这里就来谈下好的研究想法从哪里来。...那么什么才是好的想法呢?我理解这个”好“字,至少有两个层面的意义。 学科发展角度的”好“ 学术研究本质是对未知领域的探索,是对开放问题的答案的追寻。...好的研究想法从哪里来 想法好还是不好,并不是非黑即白的二分问题,而是像光谱一样呈连续分布,因时而异,因人而宜。...那么,好的研究想法从哪里来呢?我总结,首先要有区分研究想法好与不好的能力,这需要深入全面了解所在研究方向的历史与现状,具体就是对学科文献的全面掌握。
数据百问系列:关于数据仓库,什么样的产品是好的Partener? 0x00 前言 本次讨论的主题是:对于数据产品经理的突出能力,你更看重哪一方面?...第一业务价值也是很重要的,业务比技术的不确定性更多,有时候更有价值;第二业务价值是最终归宿,虽然说好的技术根基不可缺少,但是目前“我”已经可以解决大部分技术问题了,有一个能在业务商业方面擅长的,组合起来产生力量...选择第二种: 讨论八: 我选择第二,针对于企业来说,业务应该适应于企业发展和经营情况而改变,我觉得一个好产品并不是只靠口碑推广就能获得价值,而是我能为为公司根据发展需求去设计一套符合自己实际需求和实用的数据产品...当我的数据仓库开发不下去的时候,他能站在数仓与业务的角度给我建议,对于我来说,这就够了。...我已经拥有能把数据仓库开发好的能力了,我现在想要的就是我所开发的数据仓库能落地下来,得到其他部门的支持与认可,获取到相关的资源并应用于业务中,那么一个业务能力强的数据产品就可以帮到我很多了。
否则在各种同类软件不断刷新的当今,一个无法给用户提供较好体验的软件自然会被淘汰。哪里有服务好的应用性能监控呢?...哪里有服务好的应用性能监控 对于哪里有服务好的应用性能监控这个问题,现在应用市场已经出了很多的类似软件。...一些大的软件制造商或者云服务器商家出产的应用性能监控,一般可信度和质量是比较高的,它们拥有的研发平台是高科技的技术团队,对系统的研发和细节设置肯定是一般的小厂家所不能比的。...上面已经解决了哪里有好的应用性能监控的问题,性能监控在对应用进行实时分析和追踪的过程当中,如果发现了问题,它的报警渠道都有哪些呢?...以上就是哪里有服务好的应用性能监控的相关内容,随便在搜索引擎上搜索一下就会有很多品牌正规的监控软件出现,用户们按需选择就可以了。
域名对我们来说是非常重要的,因为只有成功注册域名之后,才能够让别人访问我们的网站。...但是,我们需要注意的是,域名在注册成功之后,并不是可以立刻使用的,也是需要一个解析过程才可以让我们的域名正常使用的,很多人不知道在哪里做域名解析,那么,在哪里做域名解析呢? 在哪里做域名解析呢?...域名解析是不需要花钱的,只需要按照一定的操作步骤进行解析就可以了,而且域名解析的步骤也是比较简单的。我们可以自己进行域名解析,如果自己不会进行域名解析的话,可以找专业的人员帮助我们进行域名解析。...一般来说,域名解析是需要进行一级域名解析和二级域名解析的,这两个步骤缺一不可,一定要注意。 在哪里做域名解析呢?...很多地方都是可以进行域名解析的,我们一定要仔细进行解析,因为如果我们无法成功解析域名的话,那么我们的网站也是无法正常运行的,所以域名解析对我们来说是非常重要的。
12月20日15:30-17:20,由腾讯主办的2020 Techo Park开发者大会大数据分论坛《开源开放,下一代云端数据仓库》与您相约751D·PARK北京时尚设计广场,深入探索数据仓库的起源、演进与未来...,期待与您共同探讨数据仓库的多元数据本质。
Vue3 在经过多个开发版本的迭代后,迎来了它的正式版本,,其中最重要的一项RFC就是 Vue Function-based API RFC,很巧的在不久前正好研究了一下react hook,感觉2者的在思想上有着异曲同工之妙...,所以有了一个想总结一下关于hook的想法,同时看到很多人关于hook的介绍都是分开讲的,当然可能和vue3.0对于这个特性的说明刚刚问世也有一定的关系。...首先我们需要了解什么是hook,拿react的介绍来看,它的定义是: 它可以让你在不编写 class 的情况下使用 state 以及其他的 React 特性。...在16.8以前的版本中,我们在写react组件的时候,大部分都都是class component,因为基于class的组件react提供了更多的可操作性,比如拥有自己的state,以及一些生命周期的实现...这是一个我们需要首先思考明白的问题。 首先抛出 Vue2 的代码模式下存在的几个问题。随着功能的增长,复杂组件的代码变得越来越难以维护。尤其发生你去新接手别人的代码时。
所谓云端Hosts,就是把原本放在本地的Hosts放到了云端,如果用JSON的话类似: { "foo.com": "1.2.3.4", "bar.com": "2.4.6.8" } 客户端跳过...,很多服务往往会同时部署在网通,电信等机房,此时应该给每个机房配置独立的云端Hosts文件,以便用户能够选择合适线路的服务器。...因为云端Hosts是通过HTTP接口服务器下发的,但是HTTP接口服务器机房数远远小于CDN下载服务器机房数,所以就产生了不和谐因素,假设一个来自辽宁电信的请求,通过北京电信获取云端Hosts,那么应该返回哪个机房的...不过对我来说这也太复杂了,我想要的其实仅仅是一个简易的云端Hosts,它不需要太智能,差不多够用就行。 最终我的解决方案很简单:经纬度!...不过如果每次请求都要通过服务查询经纬度的话,无疑是不可取的,幸运的是在忽略大陆板块漂移影响的前提下,经纬度基本是不变的,所以我们可以事先都查询好保存起来,如此一来的话还需要一份省市行政区划大全的数据,这个可以参考我以前写文章
数据无论是对于我们个人来说,还是对于公司来说,都是非常重要的。那么,如何储存数据也是许多公司面临的问题,直接数据既要保证安全性,又要保证我们在储存的时候便捷性,访问的时候也需要快速响应。...那么有什么样的方式能够储存这样如此庞大的数据量呢?在云数据仓库 Snowflake,提出云数据库概念之前,大部分的企业都会使用传统数据库来解决这一难题。那么,云数据仓库的意义是什么呢?...一.云数据仓库 Snowflake功能的革新 最开始的数据仓库一般是通过软件和硬件一体化的架构制造出来的,这种数据仓库不仅造价非常高昂,并且锁能够储存的数据量也是十分有限,在后续拓展的时候你会面临较大的难题...随着数据仓库的不断发展,语音数据库最终出现能够降低数据访问延迟了,同时,具有了可扩展性这一优点。 二.云数据仓库的意义 那么,云数据库的出现有哪些意义呢?...云数据仓库 Snowflake公司可以说是费尽心思,既要能够承受每天上一次的数据请求,又要能够保证这些数据的安全,是一件非常困难的事情。
这些消费者使用从公共云提供商的共享基础设施分配的资源。消费者可以通过提供商的租赁控制管理他们分配的资源,而公共云提供商则利用这种基于社区的方法来管理规模经济的成本。...这些考虑因素往往会导致IT组织采用多元化的云计算策略。 崎岖不平的云端之路 IT组织可以遵循各种实施方法来实现并获得云计算功能的好处。...云计算有多种途径可以满足不同的业务目标,从最复杂的技术到简单易用的技术。...这条路径需要多样化的、深入的技术专业知识,并且必须定制和集成许多专业化技术,以提供和维护一致的私有云环境,同时提供业务所需的专业功能,因此这种方法的实际可行性通常只适用于那些可以实施开发和维护的规模最大和技术最熟练的组织...构建块方法 构建私有云环境的一个流行途径是通过集成来自供应商支持的组件的“构建块”。这种方法仍然需要在特定于供应商的技术方面具有深度的开发和集成专业知识,并且需要更深入的投术。
本文介绍在警务信息数据仓库分析与设计的基础上,应用 Microsoft SQL Server 2008 R2 的集成服务(SQL Server Integration Services,SSIS...)功能, 完成警务信息数据仓库 SSIS 包的配置任务,并最终实现将数据源 OLTPHotel 中的数据, 抽取转化后加载到数据仓库 HuangDW_Hotel 之中。...一、SQL Server 2008 R2 Microsoft SQL Server 微软公司推出的一款商品化关系型数据库管理系统(RDBMS),因其中包括了数据仓库的管理功能,也是一款关系数据仓库管理系统...、大规模数据仓库、空间数据、高级报告与分析服务等功能,还增强了应用开发能力,提高了可管理性,强化了对商业智能及数据仓库的支持。 ...我们的警务信息数据仓库是在 SQL Server 2008 R2 平台上实现的,因此,简单介绍 SQL Server 2008 R2 与警务信息数据仓库实现有关的服务功能。
当前绝大部分数据仓库都会采用 SQL,SQL 发展了几十年已经成为数据库界的标准语言,用户量巨大,所以支持 SQL 对于数据仓库来讲也是很正常的。...典型表现是一些数据仓库开始集成 Python 的能力,将 Python 这样的非 SQL 语言融入到数据仓库中。...我们知道,SQL 的执行效率取决于数据库优化引擎的优化程度,好的数据库会根据 SQL 的计算目标(而非字面意思)选择更高效的执行方式。...接下来我们来看看非 SQL 数据仓库 esProc 的能力,会有哪些不同。esProc SPLesProc 数据仓库的形式化语言是 SPL,并没有使用业界普遍采用的 SQL。...而且 SPL 目前是用 Java 实现的,虽然获得了兼容性好、移植性强以及易于云化的好处,但也受限于 JVM 而无法充分利用 CPU 和内存。
数据仓库的建设是不同于面向业务的操作型数据库,它的核心更应该是业务知识。单纯的理论是无聊的,那么我们从一个实例来,那么就已我手边正在放lpl直播的虎牙直播为例。...假设我们已经有了基础数据,要开始建设一个数据仓库了,开发工具使用的是hive。 1.首先我们应该确认数据仓库的主题,模型的建立均要以建立好的主题为准,而不是力图建设一个适合于所有主题的模型。...上面所述的便是数据仓库的建立的大概思路,细节在开发过程中,需要不断的完善。下面大概聊聊对于数据仓库质量管理的一些理解。...在建立数据仓库的过程中,要注意统一格式,比如日期,需要在刚开始开发的时候,就要确定好选用‘yyyy-mm-dd hh:mm:ss,0’呢,还是其他的格式。...数据类型要注意好精度,比如高精度数向低精度数的转换,数值类型就是选用数值。
领取专属 10元无门槛券
手把手带您无忧上云