自然语言处理在大数据以及近年来大火的人工智能方面都有着非同寻常的意义。那么,什么是自然语言处理呢?在没有接触到大数据这方面的时候,也只是以前在学习计算机方面知识时听说过自然语言处理。书本上对于自然语言处理的定义或者是描述太多专业化。换一个通俗的说法,自然语言处理就是把我们人类的语言通过一些方式或者技术翻译成机器可以读懂的语言。
好几天没有写关于自然语言处理方面的内容,实在抱歉,不过还是感谢大家支持。今天给大家分享一下关于中文自然语言处理的一些基础知识,希望能够帮你快点“入坑”。
自然语言处理本身是为了让计算机能够处理、理解以及运用人类语言,从而达到人与计算机之间的有效通讯,为了研究信息检索、情感分析、文本分类、智能问答、摘要提取、文本挖掘,舆情分析、知识图谱等方面的问题,解决在词态、句法、语义上的歧义性,这里主要是介绍我个人在使用相关算法学习时使用的开源标注工具和标注平台,以供参考。
自然语言处理是什么?谁需要学习自然语言处理?自然语言处理在哪些地方应用?相关问题一直困扰着不少初学者。针对这一情况,作者结合教学经验和工程应用编写此书。《自然语言处理理论与实战》讲述自然语言处理相关学科知识和理论基础,并介绍使用这些知识的应用和工具,以及如何在实际环境中使用它们。由于自然语言处理的特殊性,其是一门多学科交叉的学科,初学者难以把握知识的广度和宽度,对侧重点不能全面掌握。《自然语言处理理论与实战》针对以上情况,经过科学调研分析,选择以理论结合实例的方式将内容呈现出来。其中涉及开发工具、Python语言、线性代数、概率论、统计学、语言学等工程上常用的知识介绍,然后介绍自然语言处理的核心理论和案例解析,最后通过几个综合性的例子完成自然语言处理的学习和深入。《自然语言处理理论与实战》旨在帮助读者快速、高效地学习自然语言处理和人工智能技术。
前几年曾经马少平老师的引荐,为某科普图书写过一篇短文介绍自然语言处理。如果只是介绍NLP的概念、任务和挑战,应该可以参考这篇小文。原文如下,仅供参考。 自然语言处理 Natural Language Processing 一、什么是自然语言处理 简单地说,自然语言处理(Natural Language Processing,简称NLP)就是用计算机来处理、理解以及运用人类语言(如中文、英文等),它属于人工智能的一个分支,是计算机科学与语言学的交叉学科,又常被称为计算语言学。由于自然语言是人类区别于其他动
地址 https://github.com/zibuyu/research_tao
2011年,日本多个机构发起的一项机器人项目,以东京大学入学考试难度为目标,以检验人工智能可在多大程度上模拟人类思考以及解决问题的能力。在去年和今年的考试中,机器人“Torobo-kun”分别获得了511分和525分,总分为950分。照着当前的成绩,Torobo-kun有80%的可能被512所私立大学和23所国立大学和公立大学录取,可惜的是,离东京大学至少获得 80% 分数的要求还差得很远。 根据对比,在两次考试中,Torobo-kun在数学和物理方面有了明显的进步,而英语和国语的成绩还是一团糟。在镁客君看
文章转自清华大学刘知远老师的github:https://github.com/zibuyu/research_tao/blob/master/00_nlp.md
AI 科技评论按:2019 年 7 月 1 日,清华大学人工智能研究院自然语言处理与社会人文计算研究中心成立仪式暨学术报告与开元成功发布会在清华大学 FIT 楼举行。这是继知识智能研究中心、听觉智能研究中心、基础理论研究中心、智能机器人研究中心、智能人机交互研究中心、智能信息获取研究中心、视觉智能研究中心之后成立的第八个研究中心。清华大学副校长、清华大学人工智能研究院管委会主任尤政院士,清华大学人工智能研究院院长张钹院士出席成立仪式并共同为中心揭牌。清华大学人工智能研究院院长助理朱军教授主持了成立仪式。
推荐Github上一个很棒的中文自然语言处理相关资料的Awesome资源:Awesome-Chinese-NLP ,Github链接地址,点击文末"阅读原文"可直达:
在中文文本中,由于词与词之间没有明显的界限符,如英文中的空格,因此分词是中文自然语言处理的一个基础且重要的步骤。分词的准确性直接影响到后续的语言处理任务,如词性标注、句法分析等。在英文的行文中,单词之间是以空格作为自然分界符的,而中文只是字、句和段能通过明显的分界符来简单划界,唯独词没有一个形式上的分界符。分词过程就是找到这样分界符的过程。
2018年7月,爱尔兰都柏林城市大学教授、自然语言处理和机器翻译领域专家刘群博士,正式加入华为诺亚方舟实验室,任语音语义首席科学家,主导语音和自然语言处理领域的前沿研究和技术创新。
自然语言处理(Natural Language Processing,NLP)是一门融合了计算机科学、人工智能及语言学的交叉学科,它们的关系如下图所示。这门学科研究的是如何通过机器学习等技术,让计算机学会处理人类语言,乃至实现终极目标–理解人类语言或人工智能。
NLPCC 将在 2018 年 8 月 26 日-30 日于内蒙古呼和浩特举行。 CCF 自然语言处理与中文计算国际会议 (NLPCC) 是由中国计算机学会主办的中文信息技术专业委员会年度学术会议,是专注于自然语言处理及中文计算领域的国际会议。会议旨在为来自学术界、工业界和政界的学者和研究者提供一个交流平台,促进学者和研究者分享研究和应用成果及创新思维。 NLPCC 将在 2018 年 8 月 26 日-30 日于内蒙古呼和浩特举行,致力于推动相关领域学术界和工业界研究、创新与应用的发展
News 新闻 4月18日,达观数据科学家团队再添专家,国内知名自然语言处理领军专家、复旦大学计算机教授黄萱菁博士正式受聘为达观数据高级顾问,达观数据在人工智能领域的研发实力又上新台阶,未来在深度学习
作者 | 陈彩娴 编辑丨岑峰1月6日,2021年ACL Fellow名单正式公布! 今年,一共有8位知名的自然语言处理学者入选,其中,华人学者有2位,占了1/4,分别是中国科学院自动化所的宗成庆教授与华为诺亚方舟实验室刘群博士。 根据官网消息,今年两位华人学者的入选理由分别是: 刘群:对机器翻译与中文自然语言处理作出了卓越贡献; 宗成庆:对机器翻译与情感分析的研究作出重大贡献,并不断促进中国自然语言处理的发展。 ACL Fellow计划始于2011年,旨在表彰对自然语言处理领域的科技研究与社区服务作出了杰出
SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob不同的是,这里没有用NLTK,所有的算法都是自己实现的,并且自带了一些训练好的字典。
在自然语言处理(NLP)领域,预训练模型刷榜已经成为行业惯例。目前,面向英文任务的评测基准有 GLUE、SuperGLUE,面向中文任务的有 ChineseGLUE(简称 CLUE)。
本文简绍了SnowNLP的使用方法,这是一个处理中文文本内容的python类库,其主要功能包括分词、词性标注、情感分析、汉字转拼音、繁体转简体、关键词提取以及文本摘要等等。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
在人工智能出现之前,机器智能处理结构化的数据(例如 Excel 里的数据)。但是网络中大部分的数据都是非结构化的,例如:文章、图片、音频、视频…
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 源 | AI深入浅出 最近几个月小编遨游在税务行业的智能问答调研和开发中,里面涉及到了很多的自然语言处理NLP的功能点。虽然接触NLP也有近两年的时间了,现在真正要应用到问答中,避免不了还是需要再重新熟识并深入研究理解。 下面是与NLP相关的一些书籍推荐、课件推荐和开源工具推荐。 主要是记录下入门的资料,由于资料的存储位置没有做规整,所以本文没有附带资源下载链接。如果有同学需要其中的资
《自然语言处理实战入门》 ---- 第4课 :中文分词原理及相关组件简介 之 语言学与分词技术简介
导读:本文旨在整理汇总一些NLPer的学习资源,包括书籍、在线课程、博客等。本文中涉及的原始失效链接均已剔除或替换,博客部分均整理为近期仍在更新的博客,欢迎文末留言区交流补充。
GPT(Generative Pre-trained Transformer)是一种基于Transformer架构的预训练语言模型,由OpenAI公司开发。在自然语言处理领域引起了广泛的关注和研究。
有句话叫:中文博大精深。 做自然语言处理(NLP)工作的同学对这几个字可能更加深有体会。自然语言,从字面意思上很好理解,就是我们平时在生活中常用的表达方式,常说的“讲人话”就是这个意思,举个例子: 一个人驼背,用自然语言会说:我背有点驼,而用非自然语言(文绉绉)则变成了:我的背部呈弯曲状。 这些话我们人很好懂,但是计算机不懂,它只懂二进制的 0 和 1。再加上中文语言错综复杂,没有什么规律可循,且同样的文字在不同语境下会有不同含义,要想让电脑正确理解就更困难了,比如: “冬天能穿多少穿多少,夏天能穿多少穿
自然语言处理(Natural Language Processing,NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究人与计算机之间用自然语言进行有效通信的理论和方法。融语言学、计算机科学、数学等于一体的科学。旨在从文本数据中提取信息。目的是让计算机处理或“理解”自然语言,以执行自动翻译、文本分类和情感分析等。自然语言处理是人工智能中最为困难的问题之一。
原文链接:https://github.com/fighting41love/funNLP
作者:伏草惟存 来源:http://www.cnblogs.com/baiboy/p/nltk2.html 1 Python 的几个自然语言处理工具 NLTK:NLTK 在用 Python 处理自然语言的工具中处于领先的地位。它提供了 WordNet 这种方便处理词汇资源的借口,还有分类、分词、除茎、标注、语法分析、语义推理等类库。 Pattern:Pattern 的自然语言处理工具有词性标注工具(Part-Of-Speech Tagger),N元搜索(n-gram search),情感分析(senti
本文谈一谈分词的那些事儿,从定义、难点到基本方法总结,文章最后推荐一些不错的实战利器。
nltk是一个python工具包, 用来处理和自然语言处理相关的东西. 包括分词(tokenize), 词性标注(POS), 文本分类, 等等现成的工具. 1. nltk的安装 资料1.1: 黄聪:Python+NLTK自然语言处理学习(一):环境搭建 http://www.cnblogs.com/huangcong/archive/2011/08/29/2157437.html 这个图文并茂, 步骤清晰, 值得一看. 我想我没必要再重新写一遍了, 因为我当时也是按照他这样做的. 资料1.2: 把py
简介:文本挖掘中,情感分析是经常需要使用到,而进行主题模型分析之前,对数据集进行文本分类再进行分析具有必要性,因为分类以后,每一类的主题才会更明显。而snownlp是一个python写的类库,可以方便的处理中文文本内容,主要看上了他的情感分类功能(二分类),分类是基于朴素贝叶斯的文本分类方法,当然也可以选择基于其他方法自己建立一个分词模型。
来源 | 微软研究院AI头条 自然语言处理(NLP)作为人工智能研究的核心领域之一,长久以来都受到广泛关注。微软全球执行副总裁沈向洋博士曾表示“懂语言者得天下,人工智能对人类影响最为深刻的就是自然语言方面。”现在很多研究人员都在进入自然语言领域,希望可以解决“让机器理解人类语言”这一难题。 为了帮助大家更好地学习NLP,微软亚洲研究院自然语言计算组资深研究员韦福如为大家推荐了一些关于自然语言学习方面经典的书籍和课程,分为入门级和进阶级两大类。 好,同学们现在都准备好了吗?请系好安全带,我们这辆开往“NLP
近年来,自然语言处理中的统计学方法已经逐渐成为主流。本书是一本全面系统地介绍统计自然语言处理技术的专著,被国内外许多所著名大学选为计算语言学相关课程的教材。本书涵盖的内容十分广泛,分为四个部分,共16章,包括了构建自然语言处理软件工具将用到的几乎所以理论和算法。全书的论述过程由浅入深,从数学基础到精确的理论算法,从简单的词法分析到复杂的语法分析,适合不同水平的读者群的需求。同时,本书将理论与实践紧密联系在一起,在介绍理论知识的基础上给出了自然语言处理技术的高层应用(如信息检索等)。在本书的配套网站上提供了许多相关资源和工具,便于读者结合书中习题,在实践中获得提高。
自然语言处理说白了,就是让机器去帮助我们完成一些语言层面的事情,典型的比如:情感分析、文本摘要、自动问答等等。我们日常场景中比较常见到的类似Siri、微软小冰之类的,这些的基础都是自然语言处理,另外还有一些语音处理,这就暂且不表了。总之,你看到的机器与人利用语言交互,用机器模拟人脑阅读,对话,评论等等这些的基础都是自然语言处理的范畴之内。
自然语言处理技术的研究,可以丰富计算机知识处理的研究内容,推动人工智能技术的发展。
【白硕】博士,研究员,中国中文信息学会常务理事,信息检索与内容安全专业委员会主任委员,中国科学院计算所、信工所和中国科学院大学兼职博士生导师,上海证券通信有限责任公司董事长。曾长期从事自然语言处理、信息检索相关领域研究工作。目前主持轻便高效证券交易系统和证券行业云服务等证券领域信息技术应用研究。 3月22号,他给大家带来了《自然语言处理与人工智能》的分享。事实上,近年来谷歌和百度等公司,在机器翻译技术上取得长足进步,主要是由于统计方法、算法和大数据的改进。网络实时数据、海量的语言数据库让谷歌认为算法和
本文根据自己的学习过程以及查阅相关资料的理解,对自然语言基础技术之词性标注进行了相对全面的简绍,包括定义、目前的难点以及常见方法,还推荐了一大波python实战利器,并且包括工具的用法。
大家好,今天开始和大家分享,我在自然语言处理(Natural Language Processing,NLP)的一些学习经验和心得体会。
本文简要介绍了自然语言处理中极其重要的句法分析,并侧重对依存句法分析进行了重点总结,包括定义、重要概念、基本方法、性能评价、依存分析数据集,最后,分享了一些流行的工具以及工具实战例子。
众所周知,参加学术会议是进入学术圈、走进学术前沿的重要方式。在学术会议上,不仅可以集中听取最新的成果报告,还有讲习班、工作坊、社交活动等形式,了解那些不会写到论文中的八卦与动态,结识学术大佬和朋友,走向学术人生巅峰。
YSSNLP 2018YSSNLP第十五届中国自然语言处理青年学者研讨会(以下简称YSSNLP)于2018年5月初在南京大学顺利举办。为促进自然语言处理领域国内外同行的交流,本次研讨会邀请了一些国内自
《研究中文文本相似度能解决很多NLP领域文本相关的问题》通过分析中文相似度的计算方式以及在各个应用场景中的使用情况,指出了中文相似度在自然语言处理中的重要性以及其在信息检索、自动问答、机器翻译、自动文摘等场景中的应用。
计算机读懂语言,在如今已经不是什么新鲜的事情了,不过你有没有想过计算机是如何读懂人类语言的呢?
SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob不同的是,这里没有用NLTK,所有的算法都是自己实现的,并且自带了一些训练好的字典。注意本程序都是处理的unicode编码,所以使用时请自行decode成unicode编码。
摘自AMiner 机器之心整理 参与:李亚洲、思源 自然语言处理是现代技术最重要的组成部分之一,而最近清华大学和中国工程院知识智能联合实验室发布一份非常全面的 NLP 报告。该报告从 NLP 的概念介
不管学界还是业界,对自然语言处理的谈论越来越多,更有甚者,自然语言处理被上升到战略层面。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wangyaninglm/article/details/88643645
一年一度的高考牵动着亿万人的心。网民们对高考的讨论十分热烈。这不,有“调皮”的网友提出:假如让机器人参加高考,能考多少分?记者将这个问题抛给了中科 院自动化所模式识别国家重点实验室助理研究员汪昆。在这位主攻机器翻译与自然语言处理的科研人员眼里,“机器人高考”这个听起来轻松幽默的话题,其实是一 个复杂的科技命题。 简单问题需要复杂处理 汪昆先描摹了机器人参加高考的情境:在读文字、听听力、识图的过程中,机器人首先要把人类的语言、图形“映射”为计算机能够处理的形式语言,再进行分析、理解和处理,最后以人类能够理
领取专属 10元无门槛券
手把手带您无忧上云