首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    别用 KMP 了, Rabin-Karp 算法了解下?

    经常有读者留言,请我讲讲那些比较经典的算法,我觉得有这个必要,主要有以下原因: 1、经典算法之所以经典,一定是因为有独特新颖的设计思想,那当然要带大家学习一波。 2、我会尽量从最简单、最基本的算法切入,带你亲手推导出来这些经典算法的设计思想,自然流畅地写出最终解法。一方面消除大多数人对算法的恐惧,另一方面可以避免很多人对算法死记硬背的错误习惯。 我之前用状态机的思路讲解了 KMP 算法,说实话 KMP 算法确实不太好理解。不过今天我来讲一讲字符串匹配的另一种经典算法:Rabin-Karp 算法,这是一个很简单优雅的算法。 本文会由浅入深地讲明白这个算法的核心思路,先从最简单的字符串转数字讲起,然后研究一道力扣题目,到最后你就会发现 Rabin-Karp 算法使用的就是滑动窗口技巧,直接套前文讲的 滑动窗口算法框架 就出来了,根本不用死记硬背。 废话不多说了,直接上干货。 首先,我问你一个很基础的问题,给你输入一个字符串形式的正整数,如何把它转化成数字的形式?很简单,下面这段代码就可以做到: string s = "8264"; int number = ; for (int i = ; i < s.size(); i++) { // 将字符转化成数字 number = * number + (s[i] - '0'); print(number); } // 打印输出: // 8 // 82 // 826 // 8264 可以看到这个算法的核心思路就是不断向最低位(个位)添加数字,同时把前面的数字整体左移一位(乘以 10)。 为什么是乘以 10?因为我们默认探讨的是十进制数。这和我们操作二进制数的时候是一个道理,左移一位就是把二进制数乘以 2,右移一位就是除以 2。 上面这个场景是不断给数字添加最低位,那如果我想删除数字的最高位,怎么做呢?比如说我想把 8264 变成 264,应该如何运算?其实也很简单,让 8264 减去 8000 就得到 264 了。 这个 8000 是怎么来的?是 8 x 10^3 算出来的。8 是最高位的数字,10 是因为我们这里是十进制数,3 是因为 8264 去掉最高位后还剩三位数。 上述内容主要探讨了如何在数字的最低位添加数字以及如何删除数字的最高位,用R表示数字的进制数,用L表示数字的位数,就可以总结出如下公式: /* 在最低位添加一个数字 */ int number = ; // number 的进制 int R = ; // 想在 number 的最低位添加的数字 int appendVal = ; // 运算,在最低位添加一位 number = R * number + appendVal; // 此时 number = 82643 /* 在最高位删除一个数字 */ int number = ; // number 的进制 int R = ; // number 最高位的数字 int removeVal = ; // 此时 number 的位数 int L = ; // 运算,删除最高位数字 number = number - removeVal * R^(L-); // 此时 number = 264 如果你能理解这两个公式,那么 Rabin-Karp 算法就没有任何难度,算法就是这样,再高大上的技巧,都是在最简单最基本的原理之上构建的。不过在讲 Rabin-Karp 算法之前,我们先来看一道简单的力扣题目。 高效寻找重复子序列 看下力扣第 187 题「重复的 DNA 序列」,我简单描述下题目: DNA 序列由四种碱基A, G, C, T组成,现在给你输入一个只包含A, G, C, T四种字符的字符串s代表一个 DNA 序列,请你在s中找出所有重复出现的长度为 10 的子字符串。 比如下面的测试用例: 输入:s = "AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT" 输出:["AAAAACCCCC","CCCCCAAAAA"] 解释:子串 "AAAAACCCCC" 和 "CCCCCAAAAA" 都重复出现了两次。 输入:s = "AAAAAAAAAAAAA" 输出:["AAAAAAAAAA"] 函数签名如下: List<String> findRepeatedDnaSequences(String s); 这道题的拍脑袋解法比较简单粗暴,我直接穷举所有长度为 10 的子串,然后借助哈希集合寻找那些重复的子串就行了,代码如下: // 暴力解法 List<String> findRepeatedDnaSequences(String s) { int n = s.length(); // 记录出现过的子串 HashSet<String> seen = new HashSet(); // 记录那些重复出现多次的子串 // 注

    02

    [Redis] redis的设计与实现-对象系统

    1.redis并没有直接使用前面的数据结构实现键值对数据库,而是基于数据结构创建了一个对象系统,字符串对象/列表对象/哈希对象/集合对象/有序集合对象都用到了至少一种前面的数据结构 2.针对不同的使用场景,为对象设置多种不同的数据结构实现,从而优化对象在不同场景下的使用效率 3.redis的对象系统实现了基于引用计数的内存回收机制,通过引用计数实现了对象共享机制,多个键共享同一个对象节约内存 4.redis对象带有访问时间记录信息,会计算键的空转时长,开启maxmemory下会优先删除长的 5.创建一个键值对时,至少创建两个对象,键对象和值对象redisObject结构定义,type属性记录了对象的类型,用type命令的时候返回的是值对象的类型 6.redisObject结构的ptr属性,指向对象的底层数据结构,encoding属性encoding属性决定了该对象使用哪个底层数据结构(整数/简单动态字符串/字典/双端链表/压缩列表/整数集合/跳跃表和字典),object encoding命令可以查看值对象的编码 7.列表对象在元素比较少时使用压缩列表,比较多时使用双端链表 9.字符串对象可以是int,raw(简单动态字符串),embstr(embstr编码的简单动态字符串),long类型的整数存的是时候是int;小于32字节的是embstr,大于的是raw 10.列表对象可以是ziplist(压缩列表)和linkedlist(双端链表),列表对象保存的所有字符串元素的长度都小于64字节和元素数量小于512个时使用ziplist rpush book "aaaaaaaaaaaaaa" "bbbbbbbbbbb"等进行测试 11.哈希对象的编码可以是ziplist或者hashtable;当使用ziplist编码时,当有新的键值对加入到哈希对象,先把键压入压缩列表,再把值压入压缩列表 12.当使用hashtable编码的哈希对象,使用字典作为底层实现,哈希对象中的每个键值对都使用字典的键值对保存 13.哈希对象保存的所有键值对的键和值字符串长度都小于64字节,保存键值对的数量小于512个,使用ziplist编码,否则使用hashtable编码 14.哈希对象中键的长度太大或者值的长度太大都会引起编码转换,使用object encoding key可以观察到 hset book aaaaaaaaaaa_name "aa"等进行测试 15.集合对象的编码可以是intset或者hashtable,intset的集合对象使用整数集合作为底层,当元素数量不超过512个,所有元素都是整数的时候;hashtable编码的使用字典作为底层实现,字典的键是字符串对象,字典的值是null;不能重复,不保证顺序,保证数据唯一 16.有序集合的编码是ziplist和skiplist,压缩列表的集合元素按分值从下到大进行排序,使用ziplist编码的,第一个节点保存元素的成员,第二个节点保存元素的分值;skiplist底层使用zset结构同时包含一个字典和一个跳跃表,对有序集合的范围操作比如zrank,zrange是通过跳跃表实现;取给定成员的分值,是通过字典实现的 保存元素小于128个,所有成员长度小于64字节的使用ziplist,其他使用skiplist

    03

    深入浅出彩虹表原理

    一言以蔽之,彩虹表是一种破解用户密码的辅助工具。彩虹表以时空折中理论为基础,但并不是简单地“以空间换时间”,而是一种“双向交易”,在二者之间达到平衡。1980年,公钥密码学的提出者之一Hellman针对DES算法(一种对称加密算法)提出了一种时空折中算法,即彩虹表的前身:预先计算的散列链集。2003年瑞典的Philippe Oechslin在其论文Making a Faster Cryptanalytic Time-Memory Trade-Off(参考博客2)中对Hellman的算法进行了改进,并命名为彩虹表。当时是针对Windows Xp开机认证的LM散列算法。当然,目前除了破解开机密码,彩虹表目前还能用于SHA、MD4、MD5等散列算法的破译,速度快、破解率高,正如Philippe在论文中提到的:“1.4G的彩虹表可以在13.6s内破解99.9%的数字字母混合型的Windows密码“。实际上,Philippe所做的改进本质上是减少了散列链集中可能存在的重复链,从而使空间的有效利用率更高,关于这一点,后面会详述。

    04
    领券