本章我们来看看在分区表中如何添加、查询、修改数据。 正文开始 在创建完分区表后,可以向分区表中直接插入数据,而不用去管它这些数据放在哪个物理上的数据表中。我们在创建好的分区表中插入几条数据: ?...从以上代码中可以看出,我们一共在数据表中插入了13条数据,其中第1至3条数据是插入到第1个物理分区表中的;第4、5条数据是插入到第2个物理分区表中的;第6至8条数据是插入到第3个物理分区表中的;第9至11...从SQL语句中可以看出,在向分区表中插入数据方法和在普遍表中插入数据的方法是完全相同的,对于程序员而言,不需要去理会这13条记录研究放在哪个数据表中。...当然,在查询数据时,也可以不用理会数据到底是存放在哪个物理上的数据表中。如使用以下SQL语句进行查询: select * from Sale 查询的结果如下图所示: ?...如果你非想知道哪条记录是放在哪个物理上的分区表中,那么就必须使用到$PARTITION函数,这个函数的可以调用分区函数,并返回数据所在物理分区的编号。 说起来有点难懂,不过用起来很简单。
我们添加它是为了提高性能并避免重复操作使后端过载。 2 分析和分区设计 数据库和表结构 至于数据库,我们决定选择MySQL 8。...这是因为他们不希望一场比赛打得特别差或特别好,从而使他们的结果两极分化。我们无法预先生成聚合数据,因为我们必须对所有可能的组合进行此操作,这是不可行的。因此,我们必须存储所有数据并即时汇总。...但是这样做,我们发现绝大多数查询只涉及在 SeasonCompetition 中玩的游戏。这使我们确信我们是对的。所以我们用刚刚定义的方法对数据库中的所有大表进行分区。...基于数据上下文的分区对性能的影响 现在让我们看看在新的分区数据库中执行查询时实现的时间改进。...本文向您展示了如何做到这一点,并通过真实案例研究展示了这种方法的结果。
这个新增选项支持在 Hive 中使用类 SQI 查询语言 HiveQL 对 BigQuery 进行读写。...这样,数据工程师就可以在不移动数据的情况下访问和查询 BigQuery 数据集,而 BigQuery 的用户则可以利用 Hive 的工具、库和框架进行数据处理和分析。...BigQuery 是谷歌云提供的无服务器数据仓库,支持对海量数据集进行可扩展的查询。为了确保数据的一致性和可靠性,这次发布的开源连接器使用 Hive 的元数据来表示 BigQuery 中存储的表。...该连接器支持使用 MapReduce 和 Tez 执行引擎进行查询,在 Hive 中创建和删除 BigQuery 表,以及将 BigQuery 和 BigLake 表与 Hive 表进行连接。...Phalip 解释说: 这个新的 Hive-BigQuery 连接器提供了一个额外的选项:你可以保留原来的 HiveQL 方言的查询,并继续在集群上使用 Hive 执行引擎运行这些查询,但让它们访问已迁移到
但是,正如你可能已经知道的那样,对 BigQuery 进行大量查询可能会产生很大的开销,因此我们希望避免直接通过应用程序进行查询,我们只将 BigQuery 作为分析和备份工具。 ?...对大表进行分区,我们就能够备份旧分区,并在不再需要这些分区时将其删除,回收一些空间。因此,我们用新 schema 创建了新表,并使用来自 Kafka 的数据来填充新的分区表。...在迁移了所有记录之后,我们部署了新版本的应用程序,它向新表进行插入,并删除了旧表,以便回收空间。当然,为了将旧数据迁移到新表中,你需要有足够的空闲可用空间。...将数据流到分区表中 通过整理数据来回收存储空间 在将数据流到 BigQuery 之后,我们就可以轻松地对整个数据集进行分析,并验证一些新的想法,比如减少数据库中表所占用的空间。...最后,我们将所有数据流到云端,让我们的客户能够轻松对所有数据进行分析。
但是,正如你可能已经知道的那样,对 BigQuery 进行大量查询可能会产生很大的开销,因此我们希望避免直接通过应用程序进行查询,我们只将 BigQuery 作为分析和备份工具。...对大表进行分区,我们就能够备份旧分区,并在不再需要这些分区时将其删除,回收一些空间。因此,我们用新 schema 创建了新表,并使用来自 Kafka 的数据来填充新的分区表。...在迁移了所有记录之后,我们部署了新版本的应用程序,它向新表进行插入,并删除了旧表,以便回收空间。当然,为了将旧数据迁移到新表中,你需要有足够的空闲可用空间。...将数据流到分区表中 通过整理数据来回收存储空间 在将数据流到 BigQuery 之后,我们就可以轻松地对整个数据集进行分析,并验证一些新的想法,比如减少数据库中表所占用的空间。...因为使用了分区,存储空间不再是个问题,数据整理和索引解决了应用程序的一些查询性能问题。最后,我们将所有数据流到云端,让我们的客户能够轻松对所有数据进行分析。
我们在元数据表中引入了多模式索引,以显着提高文件索引中的查找性能和数据跳过的查询延迟。元数据表中添加了两个新索引 1....使用元数据表进行data skipping 随着在元数据表中增加了对列统计的支持,数据跳过现在依赖于元数据表的列统计索引 (CSI),而不是其自己的定制索引实现(与 0.10.0 中添加的空间曲线相比)...Spark 数据源改进 Hudi 的 Spark 低层次集成进行了相当大的改进,整合了通用流程以共享基础架构,并在查询数据时提高了计算和数据吞吐量效率。...• 当使用标准 Record Payload 实现时(例如,OverwriteWithLatestAvroPayload),MOR 表只会在查询引用的列之上获取严格必要的列(主键、预合并键),从而大大减少对数据吞吐量的浪费以及用于解压缩的计算并对数据进行解码...加密 在 0.11.0 中,添加了对 Spark 3.2 的支持,并附带了 Parquet 1.12,它为 Hudi(COW表)带来了加密功能。有关详细信息,请参阅加密指南页面[13]。
元数据表中添加了两个新索引: 布隆过滤器索引包含文件级布隆过滤器,以便在进行writer更新插入期间将主键查找和文件修剪作为布隆索引的一部分。...使用元数据表进行data skipping 随着在元数据表中增加了对列统计的支持,数据跳过现在依赖于元数据表的列统计索引 (CSI),而不是其自己的定制索引实现(与 0.10.0 中添加的空间曲线相比)...Spark 数据源改进 Hudi 的 Spark 低层次集成进行了相当大的改进,整合了通用流程以共享基础架构,并在查询数据时提高了计算和数据吞吐量效率。...当使用标准 Record Payload 实现时(例如,OverwriteWithLatestAvroPayload),MOR 表只会在查询引用的列之上获取严格必要的列(主键、预合并键),从而大大减少对数据吞吐量的浪费以及用于解压缩的计算并对数据进行解码...加密 在 0.11.0 中,添加了对 Spark 3.2 的支持,并附带了 Parquet 1.12,它为 Hudi(COW表)带来了加密功能。有关详细信息,请参阅加密指南页面。
BigQuery 的云数仓优势 作为一款由 Google Cloud 提供的云原生企业级数据仓库,BigQuery 借助 Google 基础架构的强大处理能力,可以实现海量数据超快速 SQL 查询,以及对...其优势在于: 在不影响线上业务的情况下进行快速分析:BigQuery 专为快速高效的分析而设计, 通过在 BigQuery 中创建数据的副本, 可以针对该副本执行复杂的分析查询, 而不会影响线上业务。...友好兼容:作为 Google Cloud 的一部分,它与 Google 系产品更兼容,对相关用户更友好。 为了实现上述优势,我们需要首先实现数据向 BigQuery 的同步。...登录 Google Cloud 控制台,创建数据集和表,如已存在可跳过本步骤。 i....在数据增量阶段,先将增量事件写入一张临时表,并按照一定的时间间隔,将临时表与全量的数据表通过一个 SQL 进行批量 Merge,完成更新与删除的同步。
将 MOR 快照同步到元存储 为了更好地支持对 OLAP 引擎上的 MOR 表的快照查询,默认情况下,MOR 快照或 RT 会使用表名同步到元存储,方法是将hoodie.meta.sync.sync_snapshot_with_table_name...Flink 1.18 支持 该版本添加了对 Flink 1.18 的支持,并添加了新的编译 maven 配置文件 flink1.18 和新的 Flink bundle hudi-flink1.18-bundle...这些旨在包含有关如何在 StreamSync 的下一轮同步中从源使用数据并写入(例如,并行性)的详细信息。这允许用户控制源读取和数据写入目标 Hudi 表的行为和性能。...使用元数据表进行 BigQuery 同步优化 现在如果启用了元数据表,BigQuery Sync 会从元数据表加载一次所有分区,以提高文件列表性能。...为 Athena 使用 S3 Scheme 最近的 Athena 版本在分区位置有 s3a 方案时静默删除 Hudi 数据。使用分区 s3 方案重新创建表可解决此问题。
随着数据的增长,我们对其进行管理的方式越来越需要调整。我们不再局限于仅使用关系型数据库。...这些系统中的每一个都利用如分布式、柱状结构和流数据之类的概念来更快地向终端用户提供信息。对于更快、更新的信息需求将促使数据工程师和软件工程师利用这些工具。...这个云服务可以很好地处理各种大小的数据,并在几秒钟内执行复杂的查询。 BigQuery是一个RESTful网络服务,它使开发人员能够结合谷歌云平台对大量数据集进行交互分析。可以看看下方另一个例子。...之前写过一篇文章里有说明如何连接到BigQuery,然后开始获取有关将与之交互的表和数据集的信息。在这种情况下,Medicare数据集是任何人都可以访问的开源数据集。...另一方面,Redshift是一个管理完善的数据仓库,可以有效地处理千万字节(PB)级的数据。该服务使用SQL和BI工具可以更快地进行查询。
文件列表索引通过从维护分区到文件映射的索引检索信息,消除了对递归文件系统调用(如“列表文件”)的需要。事实证明这种方法非常高效,尤其是在处理大量数据集时。...使用 Hudi 0.14.0,用户可以在为其 Hudi 表执行 Glue 目录同步时激活基于元数据表的文件列表。...Google BigQuery 同步增强功能 在 0.14.0 中,BigQuerySyncTool 支持使用清单将表同步到 BigQuery。与传统方式相比,这预计将具有更好的查询性能。...Spark 读取端改进 MOR Bootstrap 表的快照读取支持 在 0.14.0 中,为引导表添加了 MOR 快照读取支持。默认行为已通过多种方式进行了更改,以匹配非引导 MOR 表的行为。...简单桶索引表查询加速(带索引字段) 对于一个简单的桶索引表,如果查询对索引键字段采用等式过滤谓词,Flink引擎会优化规划,只包含来自非常特定数据桶的源数据文件;此类查询预计平均性能将提高近 hoodie.bucket.index.num.buckets
每天从以太坊区块链分类帐中提取数据,这其中包括 Token 转移等智能合约交易结果。 取消按日期分区的数据规范,并将其存储在 BigQuery 平台上,进行简单且具有成本效益的探索。...到目前为止,以太坊区块链的主要应用实例是Token交易。 那么,如何借助大数据思维,通过查询以太坊数据集的交易与智能合约表,来确认哪种智能合约最受欢迎?...最后,我们对至少拥有10只迷恋猫的账户进行了数据收集,其中,颜色表示所有者,将迷恋猫家族进行了可视化。其中,圆点大小就代表加密猫的级别。...其实这个时间点,对应了OMG Token的第一次空投。 由于数据由以太坊钱包地址之间的转移组成,因此,我们可以使用有向图数据结构进行分析。...我们使用Modularity算法对不同组的节点进行颜色标记,并使用Gephi进行可视化(小编:下图像不像一条可爱的小金鱼)。 像不像一条小金鱼??
通过抽象物理文件布局并跟踪元数据层内文件级别的表状态(包括分区),这些格式使用面向日志的元数据层将逻辑和物理数据组织解耦,如下所示。...• 完整状态重建 - 计算引擎可以通过处理元数据事件日志来重建表的当前状态并识别活动文件和分区。 • 时间旅行 - 与基于事件的系统类似,我们可以使用事件日志和版本控制机制恢复到以前的表版本。...此外,包括 Snowflake、BigQuery 和 Redshift 在内的主要 MPP 和云数据仓库供应商已通过外部表功能整合了支持。...例如,XTable 可以支持将数据增量摄取到 Hudi 表中(利用其效率),同时允许 Trino、Snowflake 或 BigQuery 等查询引擎使用 Iceberg 格式读取数据。...Google 同样推广了其分析湖仓一体架构,在 2023 年发布的白皮书[16]中进行了概述,为使用 BigQuery 作为首选或开放的 Apache Iceberg 和 BigLake 平台构建统一分析湖仓一体提供了蓝图
为了能够信任数据,我们需要对其进行监控并确保基于它生成准确的见解,但目前是可选的,因为在开始时最有效的选择是利用其他组件的数据测试功能,但我们将在本文中讨论数据监控工具。...在 ELT 架构中数据仓库用于存储我们所有的数据层,这意味着我们不仅将使用它来存储数据或查询数据以进行分析用例,而且还将利用它作为执行引擎进行不同的转换。...一旦它启动并运行,我们只需要通过定义添加一个连接: • Source:可以使用 UI 选择“文件”来源类型,然后根据数据集和上传数据的位置进行配置,或者可以利用 Airbyte 的 Python CDK...(如果你不熟悉这个词,这篇很棒的文章[21]对不同类型的数据产品进行了详尽的概述。) 这个阶段的目标是构建可以由我们的最终用户直接访问的仪表板和图表(无论是用于分析还是监控,取决于数据集)。...建立连接后,您可以试验不同的图表类型、构建仪表板,甚至可以利用内置 SQL 编辑器向您的 BigQuery 实例提交查询。
对于每天添加新行且没有更新或删除的较大表,我们可以跟踪增量更改并将其复制到目标。对于在源上更新行,或行被删除和重建的表,复制操作就有点困难了。...由于我们正在逐步切换用户,因此我们必须意识到 BigQuery 中的表需要具有生产级质量。 数据验证:在数据发布给数据用户之前,需要对数据进行多种类型的数据验证。...这包括行计数、分区计数、列聚合和抽样检查。 BigQuery 的细微差别:BigQuery 对单个查询可以触及的分区数量的限制,意味着我们需要根据分区拆分数据加载语句,并在我们接近限制时调整拆分。...干运行和湿运行 干运行,指的是没有数据的执行,可以确保变换的查询没有语法错误。如果干运行成功,我们会将数据加载到表中并要求用户进行湿运行。湿运行是一次性执行,用来测试结果集是否全部正确。...利益相关者审查:我们邀请我们的用户和利益相关者(包括 Google Cloud Platform 客户团队)进行定期审查,以跟踪风险、寻求帮助并对我们所做的事情保持透明。
对数据表的所有更改都将转换为提交到元数据表的元数据记录,我们将其设计为多表事务,这样每次对 Hudi 表的写入只有在数据表和元数据表都提交时才能成功。...由于像 S3 这样的云存储对非常大的数据集上的文件系统调用进行速率限制和节流,因此直接文件列表不能随着分区中文件数量的增加而很好地扩展,并且在某些情况下,文件系统调用可能无法完成。...该索引对记录键的最小值和最大值采用基于范围的修剪,并使用基于布隆过滤器的查找来标记传入记录。对于大型表,这涉及读取所有匹配数据文件的页脚以进行布隆过滤器,这在整个数据集随机更新的情况下可能会很昂贵。...根据我们对包含 100k 个文件的 Hudi 表的分析,与从单个数据文件页脚读取相比,从元数据表中的 bloom_filter 分区读取布隆过滤器的速度要快 3 倍。...旨在以多种方式进行可扩展、自我管理,并支持高效、轻松地向 Hudi 添加更丰富的索引。我们计划在即将发布的版本中使用新索引来增强多模式索引。
这些神经网络训练的步骤包含前向传播和反向传播,将在 BigQuery 的单个SQL查询语句中实现。当它在 BigQuery 中运行时,实际上我们正在成百上千台服务器上进行分布式神经网络训练。...听上去很赞,对吧? 也就是说,这个有趣的项目用于测试 SQL 和 BigQuery 的限制,同时从声明性数据的角度看待神经网络训练。...d0 和 d1 添加到之前内部子查询的结果当中。...因为资源的限制,我们将会使用一个简单的决策边界来评估模型,如此一来,我们就可以在少量迭代后得到较好的准确率。 我们将使用一个简单的数据集,其输入 X1、X2 服从标准正态分布。...分布式 SQL 引擎在数十年内已经有了大量的研究工作,并产出如今的查询规划、数据分区、操作归置、检查点设置、多查询调度等技术。其中有些可以与分布式深度学习相结合。
水平可伸缩性指的是增加更多的机器,而垂直可伸缩性指的是向单个节点添加资源以提高其性能。 Redshift提供了简单的可伸缩选项。只需单击几下鼠标,就可以增加节点的数量并配置它们以满足您的需要。...ETL vs ELT:考虑到数据仓库的发展 Snowflake构建在Amazon S3云存储上,它的存储层保存所有不同的数据、表和查询结果。...除此之外,Snowflake还提供了几乎任何规模和并发性的多个虚拟仓库,可以同时对相同的数据进行操作,同时完全强制执行全局系统范围的事务完整性,并保持其可伸缩性。...谷歌BigQuery提供可伸缩、灵活的定价选项,并对数据存储、流插入和查询数据收费,但加载和导出数据是免费的。BigQuery的定价策略非常独特,因为它基于每GB存储速率和查询字节扫描速率。...结论 我们通常向客户提供的关于选择数据仓库的一般建议如下: 当数据总量远小于1TB,每个分析表的行数远小于500M,并且整个数据库可以容纳到一个节点时,使用索引优化的RDBMS(如Postgres、MySQL
这意味着 Google BigQuery MERGE 命令可让您通过更新、插入和删除 Google BigQuery 表中的数据来合并 Google BigQuery 数据。...partition by date,user_id) as revenue_per_day from production.payment_transaction ; 7.移动平均线 通常,BI 开发人员的任务是向报告及其出色的仪表板添加移动平均值...使用 PARTITION BY 它使您有机会对所有以下事件进行分组,无论每个分区中存在多少个事件。...希望这些来自数字营销的 SQL 用例对您有用。可以帮助您完成许多项目。 SQL 片段让我的工作变得轻松,几乎每天都在使用。此外,SQL 和现代数据仓库是数据科学的必备工具。...其强大的方言功能允许轻松建模和可视化数据。由于 SQL 是数据仓库和商业智能专业人员使用的语言,因此如果您想与他们共享数据,它是一个很好的选择。
领取专属 10元无门槛券
手把手带您无忧上云