首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R语言之数据框的合并

有时数据集来自多个地方,我们需要将两个或多个数据集合并成一个数据集。合并数据框的操作包括纵向合并、横向合并和按照某个共有变量合并。...1.纵向合并:rbind( ) 要纵向合并两个数据框,可以使用 rbind( )函数。被合并的两个数据框必须拥有相同的变量,这种合并通常用于向数据框中添加观测。...横向合并:cbind ( ) 要横向合并两个数据框,可以使用 cbind( ) 函数。用于合并的两个数据框必须拥有相同的行数,而且要以相同的顺序排列。这种合并通常用于向数据框中添加变量。...按照某个共有变量合并:merge( ) 有时我们有多个相关的数据集,这些数据集有一个或多个共有变量,我们想把它们按照共有变量合并成一个大的数据集。...该数据集是关于药物吲哚美辛(indometacin)的药物代谢动力学数据,一共有 6 名试验对象,每名试验对象在连续的 8 小时内定时测定了血液中的药物浓度,共有 11 次的测定值。

89250
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据的预处理基础:如何处理缺失值

    MAR(半随机丢失):您必须考虑MAR与MCAR有何不同, 如果缺失和观测值之间存在系统关系,则为MAR。例如-男性比女性更容易告诉您自己的体重,因此体重就是MAR。...如果任何两个或多个变量的缺失之间没有关系,并且一个变量的缺失值和另一个变量的观测值之间也没有关系,则这就是MCAR。 如果缺失和观测值之间存在系统关系,则为MAR。...要检查这一点,我们可以使用2种方法: 方法1: 可视化变量的缺失如何相对于另一个变量变化。 通过使用两个变量的散点图,我们可以检查两个变量之间的关系是否缺失。 ?...将残差添加到估算值可恢复数据的可变性,并有效消除与标准回归估算方案相关的偏差。 实际上,随机回归插补是唯一在MAR缺失数据机制下给出无偏参数估计的过程。 因此,这是唯一具有某些优点的传统方法。...EM算法基本上分为两个阶段。第一阶段有助于估计缺失值。此步骤称为E步骤。第二阶段有助于优化模型的参数。此步骤称为M步。重复这两个步骤,直到我们收敛。

    2.7K10

    缺失值异常值的处理&&导入数据&&插值拟合工具箱

    1.构造数据 下面的这个就是生成这个正态分布的数据,这个时候我们的这个数据里面是没有这个异常的数据的,因此这个时候我们可以自己创造这个异常的数据: 下面的这个代码里面的这个NaN表示的就是缺失值,然后构造出来了四个异常值...randn(1,100); data(20:20:80)=NaN; data(10)=-50; data(40)=45; data(70)=-40; data(90)=50; plot(x,data) 2.缺失值的处理...我们可以让这个显示出来这个控件和代码,使用这个线性插值的方法对于这个缺失的数据进行填充; 下面的这个就是进行这个缺失值处理之后的这个结果: 3.异常值的处理 在我们的这个matlab里面称这个异常值为离群数据...,两个说法都是一样的: 这个地方我们的这个异常值的处理是基于上面的这个缺失值处理之后的这个结果的基础上面再次进行这个异常值的处理: 因此我们进行这个选择的时候,输入的这个数据需要是这个上面的操作之后的数据集合...,而不是我们最开始的这个数据集合data;使用这个线性插值的方法对于这个异常数据进行处理; 我们可以看到这个离群数据进行处理的时候,是在这个异常数据这个点的位置打上叉号,然后使用这个插值数据进行填充:

    7010

    数据清洗 Chapter08 | 基于模型的缺失值填补

    基于模型的方法会将含有缺失值的变量作为预测目标 将数据集中其他变量或其子集作为输入变量,通过变量的非缺失值构造训练集,训练分类或回归模型 使用构建的模型来预测相应变量的缺失值 一、线性回归 是一种数据科学领域的经典学习算法...含有缺失值的属性作为因变量 其余的属性作为多维的自变量 建立二者之间的线性映射关系 求解映射函数的次数 2、在训练线性回归模型的过程中 数据集中的完整数据记录作为训练集,输入线性回归模型 含有缺失值的数据记录作为测试集...二、KNN算法 通过计算训练集样本与目标样本的相似性,“鼓励”每个样本与目标样本去匹配 根据给定条件,选择最适合的K个样本作为目标样本的“邻居” 相似性的度量有以下选择: ?...2、使用KNN算法进行缺失值填补 当预测某个样本的缺失属性时,KNN会先去寻找与该样本最相似的K个样本 通过观察近邻样本的相关属性取值,来最终确定样本的缺失属性值 数据集的实例s存在缺失值...,根据无缺失的属性信息,寻找K个与s最相似的实例 依据属性在缺失值所在字段下取值,来预测s的缺失值 3、数据集介绍 对青少年数据集的缺失值属性gender进行填补 学生的兴趣对其性别具有较好的指示作用

    1.5K10

    独家 | 手把手教你处理数据中的缺失值

    作者:Leopold d’Avezac 翻译:廖倩颖 校对:杨毅远 本文长度为1900字,建议阅读8分钟 本文为大家介绍了数据缺失的原因以及缺失值的类型,最后列举了每一种缺失值类型的处理方法以及优缺点。...标签:离群数据 填充 不论是机器学习模型,KPI或者报告,缺失值和它们的替代值都会导致你的分析结果出现巨大错误。通常分析人员只用一种方式处理缺失值。...这是因为空值与其实际值无关。这取决于你的数据集是否能被测试。为了找出替代值,你应该比较其他变量的分布,以获取具有缺失值和非缺失值的记录。...完全随机缺失(MCAR):空值的出现与记录中已知或者未知特征是完全无关的。再次重申,这取决于你的数据集是否能被测试。...处理缺失数据 删除 删除行:(只对于完全随机缺失(MCAR))如果缺失值只占数据集的一小部分,删除行是一个完美解决方案。但是,当比例上升时,这很快就行不通了。

    1.4K10

    如何删除数据框中所有性状都缺失的行?

    删除上面数据框中的第二行和第四行! 在数据分析中,有时候需要将缺失数据进行删除。...删除数据很有讲究,比如多性状模型分析时,个体ID1的y1性状缺失,y2性状不缺失,评估y1时,不仅可以通过亲缘关系矩阵和固定因子进行评估,还可以根据y1和y2的遗传相关进行评估,这时候,y1的缺失就不需要删除...tidyverse的drop_na函数,当面对多个列时,它的选择是“或”,即是只有有有一列有缺失,都删掉。有时候我们想将两列都为缺失的删掉,如果只有一列有缺失,要保留。...: y1 缺失的行有:1,2,4 y2 缺失的行有:2,3,4 y1和y2都缺失的行有:2,4 1....if_all(-ID, .fns = is.na)) 特别是第二种方法,你有20个性状没问题,即使你有200个性状也是没问题的! 5. 所有测试代码汇总 欢迎关注我的公众号:育种数据分析之放飞自我。

    1.8K10

    ​一文看懂数据清洗:缺失值、异常值和重复值的处理

    作者:宋天龙 01 数据列缺失的4种处理方法 数据缺失分为两种:一种是行记录的缺失,这种情况又称数据记录丢失;另一种是数据列值的缺失,即由于各种原因导致的数据记录中某些列的值空缺。...在极少数情况下,部分缺失值也会使用空字符串来代替,但空字符串绝对不同于缺失值。从对象的实体来看,空字符串是有实体的,实体为字符串类型;而缺失值其实是没有实体的,即没有数据类型。...这种思路主要看后期的数据分析和建模应用,很多模型对于缺失值有容忍度或灵活的处理方法,因此在预处理阶段可以不做处理。...不基于距离做计算,因此基于值的距离做计算本身的影响就消除了,例如DBSCAN。 在数据建模前的数据归约阶段,有一种归约的思路是降维,降维中有一种直接选择特征的方法。...假如我们通过一定方法确定带有缺失值(无论缺少字段的值缺失数量有多少)的字段对于模型的影响非常小,那么我们根本就不需要对缺失值进行处理。

    9.8K40

    流动性挖矿和质押 两个概念有合并的趋势?

    危险表示危险是相对的。这张表上的危险评价是根据持有加密钱银作为出资的相对危险。加密钱银作为一种出资,危险很高。...另一个需求留意的重要点是,虽然一个渠道或许被评为低危险,但出资者有必要记住,供给的报答越高,危险越高。  换句话说,低危险的渠道能够供给高危险的出资。  ...总结 质押和流动性发掘曾经是两个彻底不同的国际。  但最近一个时期,两者的定义有融合的趋势。 ...加密钱银中有流动性发掘和质押的一席之地,但出资者必定要留意危险,避免高APR的引诱。  PanckaeSwap等渠道通过自己在资金池中的费用份额来证明自己丰盛的收入是合理的。 ...可是价格一旦走弱,就会开始跌落,而且跌落的速度或许会很快,从上面两个事例能够看出。   在通过任何质押或流动性发掘渠道进行出资之前,有必要对质押代币的交易量和流动性进行评价。  流动性是必要的。

    21320

    图解Pandas:查询、处理数据缺失值的6种方法!

    上周我码了几篇文章,其中一篇是《花了一周,我总结了120个数据指标与术语。》。另外我还写了两篇Pandas的基础操作文,发在了「快学Python」上,如果还没看过的同学正好可以再看一下。...在Pandas数据预处理中,缺失值肯定是避不开的。但实际上缺失值的表现形式也并不唯一,我将其分为了狭义缺失值、空值、各类字符等等。 所以我就总结了:Python中查询缺失值的4种方法。...阅读原文:Python中查询缺失值的4种方法 查找到了缺失值,下一步便是对这些缺失值进行处理,缺失值处理的方法一般就两种:删除法、填充法。...历史Pandas原创文章: 66个Pandas函数,轻松搞定“数据清洗”! 经常被人忽视的:Pandas文本数据处理! Pandas 中合并数据的5个最常用的函数!...专栏:#10+Pandas数据处理精进案例

    1.1K10

    Spark得到两个RDD值集合有包含关系的映射

    问题场景 有两个RDD的数据集A和B(暂且分别称为新、老RDD)以及一组关于这两个RDD数据的映射关系,如下图所示: 以及A和B的各元素映射关系的RDD,如下图所示: 上述映射关系,代表元素...以第一列所组成的元素作为关键字,第二列作为值的集合。现要求映射对,使得在该映射关系下,B的值集合可以覆盖A的值几何的元素。如上结果应该为:(b, d)。...因为A中以b为键的集合为B中以d为键的值集合的子集。 受到单机编程的思维定势,使用HashMap实现,虽然可以运行,但是太慢啦啦,所以改用另一种思路,可以充分利用分布式的优点。...key,进行分组,统计每一个key所对应的值集合 val groupData = data.map(item => { val key = item._1 val value = item...属性可以完全覆盖旧的url属性, 即 oldAttrSet与newAttrSet的差集为空 if(subtractSet.isEmpty) (item._1, item._2._1._

    1.1K10

    R 数据整理(三:缺失值NA 的处理方法汇总)

    > is.na(c(1,2,3,NA,'sdas')) [1] FALSE FALSE FALSE TRUE FALSE # 我们可以直接用which 获取TRUE 所在的index 但是,这个函数并不能很好的使用在数据框中...,比如我们想要获得缺失值所在行呢?...其会返回一个矩阵,对应的缺失值会在对应位置返回一个TRUE,如果这时候通过which 获取,其只会返回一个坐标,这是因为数据框经过is.na 后返回一个矩阵,而矩阵的坐标关系和向量又非常的微妙,其本质也就是向量的不同的排列...我们都知道,布尔值实际就是0和1,我们可以利用这个特性,获得那些经过is.na 后,行和不是0 的行,那就代表其存在表示TRUE(NA)的数据了: > rcmat[!...非常贴心的将缺失值替换为其所在列的上一行数值的值: > fill(X,X1,X2) X1 X2 1 A 1 2 B 1 3 C 3 4 D 4 5 E 5 6 E 6 >

    4.8K30

    数据缺失值的3种处理方式,终于有人讲明白了

    03 怎样处理缺失值 野生的数据经常出现缺失值,这个很好理解,我们填写表格也经常心浮气躁,有一些内容可能就漏填了,譬如说在性别一栏留下了空白,这就是缺失值。...但在真实的环境中,数据更像是Jerrys最爱的奶酪,上面布满了空空洞洞的缺失值。 要进行数据清洗,就需要处理这些缺失值。那么,遇到缺失值,标准的处理流程都是怎样的呢?...一般来说,有以下三种处理方式: 第一种是咱家有矿型的处理方式,丢弃。 只要是某条样本存在缺失值,就直接丢弃这条样本,眼不见心不烦,也没后面这么多的是。...如果不丢弃存在缺失值的样本,想要喂给数据,就必须重新给它赋值,这种行为如果上纲上线,是有一点“捏造数据”的意思在里面的,一旦赋值出现某种偏向性,就会影响整个样本的整体数据分布,最终必将导致机器学习模型的预测出现某种偏差...这个想法首先就很有意思,我填充缺失值,是为了接着进行机器学习,而现在要填充缺失值,却必须首先进行机器学习,嗯,有那味了。那么,机器学习究竟怎样鸡生蛋蛋生鸡,卖个关子,感兴趣的可以看看这本书。

    1.3K10

    【Python】基于某些列删除数据框中的重复值

    subset:用来指定特定的列,根据指定的列对数据框去重。默认值为None,即DataFrame中一行元素全部相同时才去除。...默认值False,即把原数据copy一份,在copy数据上删除重复值,并返回新数据框(原数据框不改变)。值为True时直接在原数据视图上删重,没有返回值。...从结果知,参数为默认值时,是在原数据的copy上删除数据,保留重复数据第一条并返回新数据框。 感兴趣的可以打印name数据框,删重操作不影响name的值。...结果和按照某一列去重(参数为默认值)是一样的。 如果想保留原始数据框直接用默认值即可,如果想直接在原始数据框删重可设置参数inplace=True。...但是对于两列中元素顺序相反的数据框去重,drop_duplicates函数无能为力。 如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-

    20.5K31

    【Python】基于多列组合删除数据框中的重复值

    最近公司在做关联图谱的项目,想挖掘团伙犯罪。在准备关系数据时需要根据两列组合删除数据框中的重复值,两列中元素的顺序可能是相反的。...本文介绍一句语句解决多列组合删除数据框中重复值的问题。 一、举一个小例子 在Python中有一个包含3列的数据框,希望根据列name1和name2组合(在两行中顺序不一样)消除重复项。...二、基于两列删除数据框中的重复值 1 加载数据 # coding: utf-8 import os #导入设置路径的库 import pandas as pd #导入数据处理的库...import numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 df =...从上图可以看出用set替换frozense会报不可哈希的错误。 三、把代码推广到多列 解决多列组合删除数据框中重复值的问题,只要把代码中取两列的代码变成多列即可。

    14.7K30
    领券