原文地址: Python合并重叠矩形框 - 小锋学长生活大爆炸 http://xfxuezhang.cn/index.php/archives/231/ 网上找了好久没找到能用的,索性自己写个来的更快...方法比较粗暴,没咋细究,若有bug欢迎留言~~ 需求: NMS中的IOU相关,是选择一个最大或者可信度最高的框框保留。 而我们现在试需要将重叠框框合并为一个大的框框,所以不能直接用上面的。...并且OpenCV的groupRectangles在Python中我实在用不懂,而且它会把不重叠的框直接删了。。 原理: 循环+递归,依次判断两个框是否有重叠。...需要去除,不然就只有一個大框, 在执行此函数前,可执行类似下面的操作。...直接加進來即可 new_array.extend(rectList) # 0: 可能還有未合並的,遞歸調用; # 1: 本次沒有合並項,說明全部是分開的,可以結束退出
有时数据集来自多个地方,我们需要将两个或多个数据集合并成一个数据集。合并数据框的操作包括纵向合并、横向合并和按照某个共有变量合并。...1.纵向合并:rbind( ) 要纵向合并两个数据框,可以使用 rbind( )函数。被合并的两个数据框必须拥有相同的变量,这种合并通常用于向数据框中添加观测。...横向合并:cbind ( ) 要横向合并两个数据框,可以使用 cbind( ) 函数。用于合并的两个数据框必须拥有相同的行数,而且要以相同的顺序排列。这种合并通常用于向数据框中添加变量。...按照某个共有变量合并:merge( ) 有时我们有多个相关的数据集,这些数据集有一个或多个共有变量,我们想把它们按照共有变量合并成一个大的数据集。...= "conc") long 一个“整洁”的数据集(tidy data)应该满足:每一行代表一个观测,每一列代表一个变量。
vision = c(4.2,4.3,4.9,4.5))test2library(dplyr)inner_join(test1,test2,by="name") #重复项合并...right_join(test1,test2,by="name") #以第二个数据框为准的合并,缺失数据为NAfull_join(test1,test2,by="name") #全部合并,不遗漏,缺失数据为...NAsemi_join(test1,test2,by="name") #仅取两者重复的行,并只留下第一个数据框valueanti_join(test1,test2,by="name") #仅取两者不同的行...,留下第一个数据框的value
请编写一个SQL查询合并在同一个大厅举行的所有重叠的活动,如果两个活动至少有一天相同,那他们就是重叠的 样例数据 +----------+-------------+-------------+ | hall_id...大厅 1: 两个活动["2823-01-13","2023-01-20"]和[“2023-01-14","2023-01-17"]重叠,我们将它们合并到一个活动中[“2023-01-13","2023-...大厅 2: ["2022-12-25","2022-12-30"]不与任何其他活动重叠,所以我们保持原样。...,对当前行的start_date 和截止到上一行的最大end_date进行比较,如果当前行的start_date 小于等于截止到前一行最大end_date 代表有交叉,可以合并,否则代表不可合并。...4行数据,开始时间为2023-01-18 结束时间为2023-01-25的活动与第一行的活动存在交叉,所以应该被合并,但是由于中间,其前一行的活动截止日期为2023-01-17,早于该行活动的开始日期而被判断为不应该被合并
我相信大家经常会使用Excel对数据进行排序。有时候我们会按照两个条件来对数据排序。假设我们手上有下面这套数据,9个人,第二列(score)为他们的考试成绩,第三列(code)为对应的评级。...主要用的是R中的order这个函数。...#读入文件,data.txt中存放的数据为以上表格中展示的数据 file=read.table(file="data.txt",header=T,sep="\t") #先按照code升序,再按照Score...,只需要前面加个负号就可以了 View(file[order(file$Code,-file$Score),]) 下面是按照code升序,然后再按score降序排列的结果,是不是跟Excel处理的结果一样...在R里面我们还可以指定code按照一定的顺序来排列 #按照指定的因子顺序排序,先good,在excellent,最后poor file$Code <- factor(file$Code , levels
当需要对多个数据集合并处理时,我们就需要对多个数据框进行连接操作,在pandas中,提供了以下多种实现方式 1. concat concat函数可以在行和列两个水平上灵活的合并多个数据框,基本用法如下...concat函数有多个参数,通过修改参数的值,可以实现灵活的数据框合并。首先是axis参数,从numpy延伸而来的一个概念。对于一个二维的数据框而言,行为0轴, 列为1轴。...,合并数据框时,对于不同shape的数据框,尽管行标签和列标签有重复值,但是都是当做独立元素来处理,直接取了并集,这个行为实际上由join参数控制,默认值为outer。...,来合并两个数据框。...key, 然后比较两个数据框中key列对应的元素,取交集的元素作为合并的对象。
seaborn提供了一个快速展示数据库中列元素分布和相互关系的函数,即pairplot函数,该函数会自动选取数据框中值为数字的列元素,通过方阵的形式展现其分布和关系,其中对角线用于展示各个列元素的分布情况...,剩余的空间则展示每两个列元素之间的关系,基本用法如下 >>> df = pd.read_csv("penguins.csv") >>> sns.pairplot(df) >>> plt.show()...函数自动选了数据框中的3列元素进行可视化,对角线上,以直方图的形式展示每列元素的分布,而关于对角线堆成的上,下半角则用于可视化两列之间的关系,默认的可视化形式是散点图,该函数常用的参数有以下几个 ###...#### 3、 x_vars和y_vars 默认情况下,程序会对数据框中所有的数值列进行可视化,通过x_vars和y_vars可以用列名称来指定我们需要可视化的列,用法如下 >>> sns.pairplot...通过pairpplot函数,可以同时展示数据框中的多个数值型列元素的关系,在快速探究一组数据的分布时,非常的好用。
转换成 (一) 把单个字段组合成一个列 Table.ToColumns(源) (二) 把需要合并的样式单独组合 Table.FromColumns(List.Range(单字段组合,0,1)&...List.Range(单字段组合,1,3)) 解释:第一个List.Range目的是为了固定班级字段;第2个List.Range是为了提取第一组的数据。...然后和2个列表进行组合并转成Table格式。 同一样的操作,提取第二部分的数据。 (三) 组合表格 Text.Combine将之前组合的表格进行合并。 (四) 重命名字段名 ?
subset:用来指定特定的列,根据指定的列对数据框去重。默认值为None,即DataFrame中一行元素全部相同时才去除。...导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv('name.csv...从结果知,参数为默认值时,是在原数据的copy上删除数据,保留重复数据第一条并返回新数据框。 感兴趣的可以打印name数据框,删重操作不影响name的值。...结果和按照某一列去重(参数为默认值)是一样的。 如果想保留原始数据框直接用默认值即可,如果想直接在原始数据框删重可设置参数inplace=True。...如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-
最近公司在做关联图谱的项目,想挖掘团伙犯罪。在准备关系数据时需要根据两列组合删除数据框中的重复值,两列中元素的顺序可能是相反的。...本文介绍一句语句解决多列组合删除数据框中重复值的问题。 一、举一个小例子 在Python中有一个包含3列的数据框,希望根据列name1和name2组合(在两行中顺序不一样)消除重复项。...import numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 df =...打印原始数据行数: print(df.shape) 得到结果: (130, 3) 由于每两行中有一行是重复的,希望数据处理后得到一个65行3列的去重数据框。...从上图可以看出用set替换frozense会报不可哈希的错误。 三、把代码推广到多列 解决多列组合删除数据框中重复值的问题,只要把代码中取两列的代码变成多列即可。
之前我们了解到了如何把2列数据进行合并的基本操作,Power Query中如何把多列数据合并?也就是把多个字段进行组合并转成表。那如果这类的数据很多,如何批量转换呢?...这个是判断合并数据起始位置的提取。_相当于x的需要处理循环的次数,y相当于需要转换的列数。...), 元数据=[Documentation.Name="批量多列合并", Documentation.Description="可以把多列相同的数据合并到一起。...这样我们就做好了一个可以适应大部分多列数据合并的自定义函数。 我们可以再来尝试下不同的数据表格来使用此函数的效果。 例1: ?...批量多列合并(源,3,3,3) 解释:批量多列合并,这个是自定义查询的函数名称,源代表的是需处理的数据表,第2参数的3代表需要循环处理的次数,第3参数的3代表需要合并数据的列数,第4参数的3代表保留前3
前言 这个笔记的起因是在学习DataExplorer 包的时候,发现: 这我乍一看,牛批啊。这语法还挺长见识的。 转念思考了一下,其实目的也就是将数据框中的指定列转换为因子。...换句话说,就是如何可以批量的对数据框的指定行或者列进行某种操作。...(这里更多强调的是对原始数据框的直接操作,如果是统计计算直接找summarise 和它的小伙伴们,其他的玩意儿也各有不同,掉头左转: 34....R 数据整理(六:根据分类新增列的种种方法 1.0) 其实按照我的思路,还是惯用的循环了,对数据框的列名判断一下,如果所取的列在数据框中,就修改一下其格式,重新赋值: data(cancer, package...这里就回到开始的问题了,如果是希望对数据框本身进行处理,而非统计学运算呢?
大家好,又见面了,我是你们的朋友全栈君。...ORA-00918: 未明确定义列: 你在做多表查询的时候出现了字段重复的情况,因为你有时候会对字段进行重新命名,表A的A1字段与表B的B1字段同时命名成了C,这时候就会出现未明确定义列,假设A表中有一个字段名叫...:A_B_C ,实体类就会有个叫ABC的字段,sql你写成: SELECT * FROM ( SELECT DISTINCT A., B.B1 AS ABC 这样写是没有问题的,但是:...如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
我的思路是 先把5份数据的基因名取交集 用基因名给每份数据做行名 根据取交集的结果来提取数据 最后合并数据集 那期内容有人留言了简便方法,很短的代码就实现了这个目的。...我将代码记录在这篇推文里 因为5份数据集以csv格式存储,首先就是获得存储路径下所有的csv格式文件的文件名,用到的命令是 files的概念,这个一定要搞明白 pattern参数指定文件的后缀名 接下来批量将5份数据读入 需要借助tidyverse这个包,用到的是map()函数 library(tidyverse...) df<-map(files,read.csv) class(df) df是一个列表,5份数据分别以数据框的格式存储在其中 最后是合并数据 直接一行命令搞定 df1的时候他也提到了tidyverse整理数据,但是自己平时用到的数据格式还算整齐,基本上用数据框的一些基本操作就可以达到目的了。
最近学徒群在讨论一个需求,就是用数据框的每一列的平均数替换每一列的NA值。但是问题的提出者自己的代码是错的,如下: ? 他认为替换不干净,应该是循环有问题。...#我好像试着写出来了,上面的这个将每一列的NA替换成每一列的平均值。 #代码如下,请各位老师瞅瞅有没有毛病。...:我是这么想的,也不知道对不对,希望各位老师能指正一下:因为tmp数据框中,NA个数不唯一,我还想获取他们的横坐标的话,输出的结果就为一个list而不是一个数据框了。...a=1:1000 a[sample(a,100)]=NA dim(a)=c(20,50) a # 按照列,替换每一列的NA值为该列的平均值 b=apply(a,2,function(x){ x[is.na...,就数据框的长-宽转换!
JAVA合并两个具有相同key的map为list,不多说,直接上代码: public class MapUtil { public static void main(String[] args...megeList = merge(mapsList,"osV"); System.out.println("megeList="+megeList); } /** * 合并两个具有相同...key的map为list * @param m1 要合并的list * @param mergeKey 以哪个key为基准合并 * @return */...stream().map(o->{ Map map = o.getValue().stream().flatMap(m->{ //合并
//点击input框 $("#name,#phone,#recommend").click(function () { $("#gener,#gift_id")
正文 本篇描述了如何计算R中的数据框并将其添加到数据框中。一般使用dplyr R包中以下R函数: Mutate():计算新变量并将其添加到数据表中。 它保留了现有的变量。...同时还有mutate()和transmutate()的三个变体来一次修改多个列: Mutate_all()/ transmutate_all():将函数应用于数据框中的每个列。...Mutate_at()/ transmutate_at():将函数应用于使用字符向量选择的特定列 Mutate_if()/ transmutate_if():将函数应用于使用返回TRUE的谓词函数选择的列...tbl:一个tbl数据框 funs:由funs()生成的函数调用列表,或函数名称的字符向量,或简称为函数。predicate:要应用于列或逻辑向量的谓词函数。...funs(cm = ./2.54) ) mutate_if():转换由谓词函数选择的特定列。
JAVA合并两个具有相同key的map为list,不多说,直接上代码: /** * list合并类 */ public class MapUtil { public static void...megeList = merge(mapsList,"osV"); System.out.println("megeList="+megeList); } /** * 合并两个具有相同...key的map为list * @param m1 要合并的list * @param mergeKey 以哪个key为基准合并 * @return */...stream().map(o->{ Map map = o.getValue().stream().flatMap(m->{ //合并
pandas.core.frame.DataFrame; 生成一个随机数数组; 将这个随机数数组与 DataFrame 中的数据列合并成一个新的 NumPy 数组。...numpy 是 Python 中用于科学计算的基础库,提供了大量的数学函数工具,特别是对于数组的操作。pandas 是基于 numpy 构建的一个提供高性能、易用数据结构和数据分析工具的库。...在这个 DataFrame 中,“label” 作为列名,列表中的元素作为数据填充到这一列中。...结果是一个新的 NumPy 数组 arr,它将原始 DataFrame 中 “label” 列的值作为最后一列附加到了随机数数组之后。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。
领取专属 10元无门槛券
手把手带您无忧上云