关于Redis的其他的一些面试问题已经写过了,比如常见的缓存穿透、雪崩、击穿、热点的问题,但是还有一个比较麻烦的问题就是如何保证缓存一致性。
最近生产环境的消息通知队列发生了大量的数据积压问题,从而影响到整个平台商户的交易无法正常进行,最后只能通过临时关闭交易量较大的商户来缓解消息队列积压的问题,经线上数据分析,我们的消息队列在面对交易突发洪峰的情况下无法快速的消费并处理队列中的数据,考虑到后续还会出现各种交易量突发状况,以下为针对消息队列(ActiveMQ)的优化过程。
依托于阿里云高速通道专线、事件总线EventBridge和MSHA(Multi-Site High Availability)多活容灾平台,消息队列RocketMQ版提供异地双活功能,通过跨实例间数据的双向同步和业务切流能力,实现业务恢复和故障恢复解耦,保障故障场景下的业务连续性。本文介绍异地双活的概念、应用场景、功能优势、使用限制和计费说明。
物联网被认为是继计算机、互联网之后,信息技术行业的第三次浪潮。随着基础通讯设施的不断完善,尤其是 5G 的出现,进一步降低了万物互联的门槛和成本。说到物联网不得不讲下物联网通讯。
为加速系统性能一般都会引入缓存机制,比如 Redis。这种情况下当用户读数据时一般会按照如下流程:
近日,天阳信用卡新一代核心产品CreditX完成了与腾讯云分布式数据库TDSQL的适配性测试,并基于双深度融合,推出“金融零售核心CreditX+分布式数据库TDSQL”的新一代分布式信用卡核心产品联合解决方案。 这标志着信用卡核心系统应用将迎来安全可控的分布式、数字化转型升级加速期。 技术上,CreditX采用“分布式+微服务+云部署”技术架构。在关系型数据库部分,使用标准SQL语法与标准数据建模方法,经过本次与腾讯云分布式数据库TDSQL全面适配性测试,证实在数据库功能性、连通性,应用适配性等各方面完
云原生 API 网关(专业版)支持CLS 日志大盘,提供状态码、请求量、耗时、错误日志、用户行为和业务分析等多个维度视图,适用于使用了 CLS 的用户。
只要用缓存,就可能会涉及到缓存与数据库双存储双写,你只要是双写,就一定会有数据一致性的问题。我们需要保证redis跟数据库的中的数据保持一致,返回正确的数据。
导语:上一章我们聊到了:什么是消息队列,为什么要用消息队列,有那些消息队列?下来我们聊聊什么样的消息队列适合我们公司。
说到Java中的队列应该都不会陌生。其具有通过先进先出,或者双端进出的方式进行数据管理;通过阻塞以达到自动平衡负载的功能。
不要惊讶,写这篇文章前,我特意去网上看了下分库分表的文章,很神奇的是,都在讲怎么进行分库分表,却不说分完以后,怎么部署上线的。这样在面试的时候就比较尴尬了。
大致思路就是,挂一个公告,半夜停机升级,然后半夜把服务停了,跑数据迁移程序,进行数据迁移。
1. 腾讯微服务平台TSF:提供服务双注册发现能力;提供容器部署前的健康检查功能;多系统可使用同一个TraceID。
消息队列是一种中间件,它的作用类似于一个电子邮箱。在这个模型中,生产者(应用程序)生成消息,就像发送邮件一样,而消费者(另一个应用程序)则接收这些消息。消息队列确保消息能够可靠地从生产者传递到消费者,而无需两者之间直接交互。
场景说明:用户注册后,需要发注册邮件和注册短信,传统的做法有两种1.串行的方式;2.并行的方式
作者|陈翔、王东松 在金融场景中,伴随着业务的扩展,应用系统也相应地增加更多的场景,这些新场景对消息系统提出更多样的需求,导致原有架构面临一系列挑战。在尝试使用 Apache Pulsar 后,平安证券决定在生产环境中进行实践。本文介绍了平安证券选择 Apache Pulsar 的原因,使用 Apache Pulsar 的场景,Apache Pulsar 实践应用中遇到的问题,以及使用 Apache Pulsar 的未来规划。 1 背景介绍 传统金融公司或券商一般会使用统一接入服务或组件来处理对外业务。
业务无关,一个具有普适性质的消息队列组件不需要考虑上层的业务模型,只做好消息的分发就可以了,上层业务的不同模块反而需要依赖消息队列所定义的规范进行通信。
分布式系统中,我们广泛运用消息中间件进行系统间的数据交换,便于异步解耦。现在开源的消息中间件有很多,前段时间我们自家的产品 RocketMQ (MetaQ的内核) 也顺利开源,得到大家的关注。
在高并发的业务场景下(如秒杀或者双十一),数据库最容易挂掉环节。所以,就需要使用Redis做一个缓冲操作,让请求先访问到Redis,如果Redis命中就不在访问数据库,从而减轻数据库的压力。
BASE理论接着了解一下,强一致性保证不了,那只好委屈求全,尽量保证最终一致性呗。
点击上方“芋道源码”,选择“设为星标” 管她前浪,还是后浪? 能浪的浪,才是好浪! 每天 10:33 更新文章,每天掉亿点点头发... 源码精品专栏 原创 | Java 2021 超神之路,很肝~ 中文详细注释的开源项目 RPC 框架 Dubbo 源码解析 网络应用框架 Netty 源码解析 消息中间件 RocketMQ 源码解析 数据库中间件 Sharding-JDBC 和 MyCAT 源码解析 作业调度中间件 Elastic-Job 源码解析 分布式事务中间件 TCC-Transaction
为帮助开发者更好地了解和学习分布式数据库技术,2020年3月,腾讯云数据库、云加社区联合腾讯TEG数据库工作组特推出为期3个月的国产数据库专题线上技术沙龙《你想了解的国产数据库秘密,都在这!》,邀请数十位鹅厂资深数据库专家每周二和周四晚上在线深入解读TDSQL、CynosDB/CDB、TBase三款鹅厂自研数据库的核心架构、技术实现原理和最佳实践等。本文将带来直播回顾第五篇《银行核心海量数据无损迁移:TDSQL数据库多源异构迁移方案》。
在今天双 11 这个万众狂欢的节日,对于阿里员工来说,每个环节都将面临前所未有的考验,特别是技术环节,今天我们就一起来探讨下双11天量交易额背后的技术。
| 导语 在大家的工作当中,是否碰到大量的插入、更新请求同时到达数据库,这会导致行或表被锁住,最后会因为请求堆积过多而触发“连接数过多的异常”(Too Many Connections)错误,遇到这样的清况?你又是如何处理?
如果你的业务处于起步阶段,流量非常小,那无论是读请求还是写请求,直接操作数据库即可,这时你的架构模型是这样的:
年关将至,又到了准备面试跳槽的季节了。据不完全统计,跳槽是涨薪最快的方式,没有之一。而跳槽成功与否的关键是“面试”,所以认真准备面试 = 快速涨薪。
参考 B站视频 PPT 参考文章 为什么要使用消息队列 主要考察应用场景及优缺点 优点 解耦: 不同服务间的调用 异步:不同系统间的调用 消峰:秒杀等场景,平时量不高,但在特定时间会有大量请求的情况,配置基础服务器资源,并引入MQ平滑处理请求,亦节约了成本。 缺点 可用性降低: 依赖于MQ,若MQ异常,将导致业务异常甚至系统崩溃 复杂度提高:需要考虑消息丢失,重复消费等问题 一致性问题:多个队列同时操作,部分消费失败的问题,异步的处理返回给用户是成功 消息队列产品比较 如何根据特点进行取舍
腾讯云数据库国产数据库专题线上技术沙龙正在火热进行中,3月24日吴夏的分享已经结束,没来得及参与的小伙伴不用担心,以下就是直播的视频和文字回顾。 关注“腾讯云数据库”公众号,回复“0324吴夏”,即可下载直播分享PPT。 大家好,我是腾讯云TDSQL高级工程师吴夏,我今天的主题是关于TDSQL异构数据同步与迁移能力的建设以及应用方面的内容。整个内容分四个部分: 一是异构数据库方面包括数据分发迁移同步的背景——我们为什么要发展这一块的能力以及现在这部分服务的基本架构; 二是TDSQL异构迁移能力有哪些比较
前段时间,知识星球里一位同学给我分享了他对消息队列的理解,并且用一个故事形象的表述了消息队列的作用。看完他的表述,我觉得用故事来描述技术组件作用的方式很有意思,也更容易让人理解。
作者是腾讯 TDMQ 初创团队的成员,在多年的业务中台的实践中,也频繁地使用到了 MQ,比如最常见的消息推送,异常信息的重试等等,对消息队列有深刻的了解。此篇文章,作者会站在时间维度讲解这二十年每款 MQ 诞生的背景以及解决了何种问题,让你能够更加清晰地了解到 MQ 的底层逻辑,帮助你学习今后可能会出现的新架构。欢迎阅读~
TDMQ 是腾讯云基于 Apache Pulsar 开源项目开发的消息队列产品,主打金融等行业应用,适用于对消息通讯要求高可靠、强一致的场景。TDMQ 在保障高可靠性的同时,还能保障消息读写的高吞吐量,而且提供丰富的消息类型,确保不同的业务场景都能有效覆盖。
每个broker与nameserver集群的所有节点建立长连接,定时注册topic信息到所有nameserver。
RabbitMQ和RocketMQ都是流行的开源消息队列系统,用于实现分布式系统之间的异步消息传递。但它们在多个方面存在显著的差异。以下是对两者区别的详细分析:
微服务架构如今非常的流行,这个架构下可能经常会遇到“双写”的场景。双写是指您的应用程序需要在两个不同的系统中更改数据的情况,比如它需要将数据存储在数据库中并向消息队列发送事件。您需要保证这两个操作都会成功。如果两个操作之一失败,您的系统可能会变得不一致。那针对这样的情况有什么好的方法或者设计保证呢?本文就和大家分享一个“发件箱模式”, 可以很好的避免此类问题。
在高并发的场景下,大量的请求直接访问MySQL很容易造成性能问题。所以,我们都会用Redis来做数据的缓存,削减对数据库的请求。但是,MySQL和Redis是两种不同的数据库,如何保证不同数据库之间数据的一致性就非常关键了。
上一周我写一了篇,数据库和缓存双写一致性的文章「老板真爱画大饼!」,故事的主人公是程序员阿旺。
在高并发的场景下,大量的请求直接访问Mysql很容易造成性能问题。所以,我们都会用Redis来做数据的缓存,削减对数据库的请求。但是,Mysql和Redis是两种不同的数据库,如何保证不同数据库之间数据的一致性就非常关键了。
消息的发布是指某个生产者向某个topic发送消息;消息的订阅是指某个消费者关注了某个topic中带有某些tag的消息,进而从该topic消费数据。
小A,工作于传统软件行业(某社保局的软件外包公司),每天工作内容就是和产品聊聊需求,改改业务逻辑。再不然就是和运营聊聊天,写几个SQL,生成下报表。又或者接到客服的通知,某某功能故障了,改改数据,然后下班部署上线。每天过的都是这种生活,技术零成长。
2、所以,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问MySQL等数据库。
Elasticsearch 集群的高可用,保证服务的连续性是企业最关注的需求。通常当企业达到一定规模时,不管是在云上还是线下都会有多个机房做异地灾备,确保在某个机房不可用时,还能持续对外提供业务。本文将会介绍几种 Elasticsearch 常见的灾备方案,同时提供了 Demo 案例方便大家动手体验。
领取专属 10元无门槛券
手把手带您无忧上云