首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

TKDE2023 | 基于双曲图学习的社交推荐算法

TLDR: 本文将社交推荐任务建模在双曲空间学习之下,并提出了一种基于双曲图学习的社交推荐模型。...具体的,其设计了一个双曲社交预训练模块以保留社交结构作为特征,并从显式的异质图学习和隐式的特征增强两方面缓解社交推荐存在的问题。...最近,一些研究探索了将图嵌入学习转移到双曲空间的替代方法,双曲空间可以保留现实世界图的层级结构。 然而,直接将当前的双曲图嵌入模型应用于社交推荐并非易事,因为存在两大挑战:网络异质性和社交扩散噪声。...为了解决上述挑战,本文提出了一种基于双曲图学习的社交推荐(HGSR)模型。首先,利用双曲社交嵌入的预训练来探索社交结构,这可以保留社交网络的层级特性。...总之,本文提出了一种新颖的HGSR模型用于双曲空间的社交推荐。为了利用社交影响扩散引入的异质性和噪声问题,设计了一种社交预训练增强的双曲异质图学习方法。

50010
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    推荐系统遇上深度学习(四十二)-使用图神经网络做基于会话的推荐

    针对上面的问题,作者提出使用图网络来做基于会话的推荐,其整个模型的框架如下图所示: ? 接下来,我们就来介绍一下这个流程吧。 2、模型介绍 2.1 符号定义 V={v1,v2,......那么我们来看看计算过程: 1)[vt-11,......有一丢丢的复杂,上面是我个人的理解的计算过程,大家可以作为参考。 上面的输入,我们充分考虑了图的信息,接下来,就是GRU单元了,这里的GRU单元没有太多变化,公式如下: ?...2.5 给出推荐结果及模型训练 在最后的输出层,使用sh和每个物品的embedding进行内积计算: ? 并通过一个softmax得到最终每个物品的点击概率: ? 损失函数是交叉熵损失函数: ?...4、总结 本文使用图网络进行基于会话的推荐,效果还是不错的,而且图网络逐渐成为现在人工智能领域的一大研究热点。感兴趣的小伙伴们,咱们又有好多知识要学习啦,你行动起来了么?

    1.7K40

    图床(推荐)

    page   喜欢Markdown写作的,肯定都会用到图床,再好的文章,也要配上图片,才能图文并茂。比如:你在某平台写作,平台限制图片大小上传, 这导致你的图片用不了,这时你就可以用图床代替。...图床可以用于写作插图、临时分享图片外链、页面打开优化、嵌入式图片等。 图床简介   图床是一个在网络平台上存储图片的地方,最终目的是为了节省本地服务器空间,加快图片打开速度。...图床推荐   下面推荐都是个人搜集,不要钱或者需要很少钱的(排序不代表推荐顺序)大家有更好用的来分享一下吧。...聚合图床   聚合图床有丰富的客户端和接口,还可以挂载自己的oss,cos,七牛云等存储,自己有足够的盈利措施去长时间运营,并且免费用户的速度也很快。...  路过图床具有全球 CDN 加速以确保高速、稳定。

    3K20

    绘制双坐标轴图

    双坐标轴图作为常用的可视化方式之一,可以在同一张图中同时展示两个不同范围的数据,示例如下 ?...在matplotib中,有以下两种方式来实现一个双坐标轴图 1. secondary_axis系列函数 具体包含以下两种函数 1.secondary_xaxis 2.secondary_yaxis 第一个函数用于绘制双...该函数的第一个参数用于指定第二个坐标轴的位置,对于双y轴图表而言,取值范围包括left和right, 对于双x轴的图表而言,取值范围包括top和bottom。...通过两个axes的叠加,可以轻松实现双坐标,而且不同的axes绘图时使用不同的数据,更加的方便直观。...对于单个数据的双坐标轴,通过secondary_axis系列函数,实现起来更加方便,对于多个数据叠加的双坐标轴,则推荐使用twin系列函数来实现。 ·end·

    1.6K40

    图计算 on nLive:Nebula 的图计算实践

    图计算之 nebula-plato [图计算 on nLive:Nebula 的图计算实践] nebula-plato 的分享主要由图计算系统概述、Gemini 图计算系统介绍、Plato 图计算系统介绍以及...图计算系统 图的划分 [图计算 on nLive:Nebula 的图计算实践] 图计算系统概述部分,着重讲解下图的划分、分片、存储方式等内容。...Gemini 图计算系统 Gemini 图计算系统是以计算为中心的分布式图计算系统,这里主要说下它的特点: CSR/CSC 稀疏图/稠密图 push/pull master/mirror 计算/通信 协同工作...Nebula 图计算 [图计算 on nLive:Nebula 的图计算实践] 目前 Nebula 图计算集成了两种不同图计算框架,共有 2 款产品:nebula-algorithm 和 nebula-plato...这里的写入可以把结果写回到图数据库,也可以写入到 HDFS 上。 API 调用 [图计算 on nLive:Nebula 的图计算实践] 更推荐大家通过 API 调用的方式。

    1.6K40

    WSDM2022 | 基于双曲几何无标度图建模的知识感知推荐算法

    此外,由于图神经网络在提取图数据特征方面的强大性能,一些研究将推荐系统与 GNN 结合了起来。...基于 GNN 的知识图谱推荐模型通常将用户-物品历史交互与外部知识图谱的交互统一为三部图,然而在数据统一之后,这些三部图通常呈现出无标度(或层次)图的特点,如图 1(a)所示,两项基准数据集的度分布近似于幂律分布...为了解决上述问题,本文提出了基于的双曲几何洛伦茨模型的知识感知推荐模型,简称为 LKGR。...3.2.2 洛伦茨消息传递 为了在洛伦茨流形上传播邻域信息,需要分别计算用户和物品邻域的洛伦茨线性组合。...图 3 展示了 topk 推荐任务下本文算法与基线算法的性能对比。

    2.4K30

    Spark机器学习实战 (十二) - 推荐系统实战

    在推荐系统项目中,讲解了推荐系统基本原理以及实现推荐系统的架构思路,有其他相关研发经验基础的同学可以结合以往的经验,实现自己的推荐系统。...1 推荐系统简介 1.1 什么是推荐系统 1.2 推荐系统的作用 1.2.1 帮助顾客快速定位需求,节省时间 1.2.2 大幅度提高销售量 1.3 推荐系统的技术思想 1.3.1 推荐系统是一种机器学习的工程应用...spark.ml中的实现具有以下参数: numBlocks 用户和项目将被分区为多个块的数量,以便并行化计算(默认为10)。 rank 模型中潜在因子的数量(默认为10)。...然后将根据非NaN数据计算评估度量并且该评估度量将是有效的。以下示例说明了此参数的用法。 注意:目前支持的冷启动策略是“nan”(上面提到的默认行为)和“drop”。将来可能会支持进一步的战略。...基于Spark的机器学习实践 (九) - 聚类算法 基于Spark的机器学习实践 (十) - 降维算法 基于Spark的机器学习实践(十一) - 文本情感分类项目实战 基于Spark的机器学习实践 (十二

    1.2K30

    图床的推荐

    关于hexo使用的免费图床 更新为2020.3.22 GitHub+PicGo+jsDelivr 搭建自己的私人图床(无备案推荐) 七牛图床(有备案推荐) 微博图床(凉凉) qq图床(不推荐) 风过不留痕大佬的图床...https://pic.alexhchu.com/ (强烈推荐+1) 其他我这里就不推荐了 GitHub+PicGo+jsDelivr 搭建自己的私人图床 教程很多,操作简单,可拓展性强,速度快并且背靠...七牛图床 一开始很多人推荐使用这个 优点 速度快 支持https 10g够轻度人群使用。 缺点 但是现在不好用了,为啥? 因为他需要你是用备案域名!!!...带人工审核/人工智障的审核图片,有时候会清理图片 QQ图床 使用qq空间的相册 优点 访问快,容量好像没有限制吧 缺点 QQ空间说不定哪天就设置上防盗链系统,而且更换域名 这不是腾讯推荐的方式...而且该节点仅提供大图,所以节点很可能会出现网络拥堵的情况,不排除腾讯为了服务稳定而对每个访问进行限速处理本人自用 更新于 2020.2.11 风过不留痕的图床 优点 免费 速度快 无需备案

    1.7K20

    Spark机器学习实战 (十二) - 推荐系统实战

    在推荐系统项目中,讲解了推荐系统基本原理以及实现推荐系统的架构思路,有其他相关研发经验基础的同学可以结合以往的经验,实现自己的推荐系统。...1 推荐系统简介 1.1 什么是推荐系统 [1240] [1240] [1240] 1.2 推荐系统的作用 1.2.1 帮助顾客快速定位需求,节省时间 1.2.2 大幅度提高销售量 1.3 推荐系统的技术思想...spark.ml中的实现具有以下参数: numBlocks 用户和项目将被分区为多个块的数量,以便并行化计算(默认为10)。 rank 模型中潜在因子的数量(默认为10)。...然后将根据非NaN数据计算评估度量并且该评估度量将是有效的。以下示例说明了此参数的用法。 注意:目前支持的冷启动策略是“nan”(上面提到的默认行为)和“drop”。将来可能会支持进一步的战略。...Spark的机器学习实践 (九) - 聚类算法 基于Spark的机器学习实践 (十) - 降维算法 基于Spark的机器学习实践(十一) - 文本情感分类项目实战 基于Spark的机器学习实践 (十二

    3K40

    动态计算图

    Pytorch底层最核心的概念是张量,动态计算图以及自动微分。 本节我们将介绍 Pytorch的动态计算图。...包括: 动态计算图简介 计算图中的Function 计算图和反向传播 叶子节点和非叶子节点 计算图在TensorBoard中的可视化 一,动态计算图简介 ?...Pytorch的计算图由节点和边组成,节点表示张量或者Function,边表示张量和Function之间的依赖关系。 Pytorch中的计算图是动态图。这里的动态主要有两重含义。...第一层含义是:计算图的正向传播是立即执行的。无需等待完整的计算图创建完毕,每条语句都会在计算图中动态添加节点和边,并立即执行正向传播得到计算结果。 第二层含义是:计算图在反向传播后立即销毁。...下次调用需要重新构建计算图。

    1.8K30
    领券