首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

TensorFlow系列专题(十三): CNN最全原理剖析(续)

如图1所示,假设输入到神经网络中的是一张大小为256*256的图像,第一层隐藏层的神经元个数为241*241。在只考虑单通道的情况下,全连接神经网络输入层到第一层隐藏层的连接数为,也就是说输入层到第一层隐藏层有个参数(1为偏置项参数个数)。而在卷积神经网络中,假设我们使用了一个大小为16*16的卷积核,则输入层到第一层隐藏层的连接数为,由于我们的卷积核是共享的,因此参数个数仅为个。有时候为了提取图像中不同的特征,我们可能会使用多个卷积核,假设这里我们使用了100个大小为16*16的卷积核,则输入层到第一层隐藏层的参数个数也仅为,这依然远远少于全连接神经网络的参数个数。

02
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    CS231n:5 卷积神经网络

    对于普通的神经网络,首先收到输入数据,然后通过若干的隐藏层的转换得到输出。每个隐藏层是由一组神经元组成的,并且这些神经元与前一层进行全连接。在单层中的每个神经元都是完全独立的,不会与其他神经元共享任何连接。最后一个全连接层又称为输出层,在分类任务中,它代表了每个类别的得分。常规的神经网络不能很好地扩展到整个图像。在CIFAR-10数据集中,图片的大小只有32*32*3 ,所以全连接的神经网络在第一个隐藏层中就需要 个权重,这看起来还是可以接受的一个数据量,但是如果图片更大,常规的神经网络就不能很好地使用了。显然易见的是,全连接这样的形式带来参数量巨大的问题, 会导致性能的浪费和过拟合问题。

    02

    深度学习 CNN卷积神经网络 LeNet-5详解

    文章首发于公众号【编程求职指南】 卷积神经网络( Convolutional Neural Network, CNN): 是一种常见的深度学习架构,受生物自然视觉认知机制(动物视觉皮层细胞负责检测光学信号)启发而来,是一种特殊的多层前馈神经网络。它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。 一般神经网络VS卷积神经网络: 相同点:卷积神经网络也使用一种反向传播算法(BP)来进行训练 不同点:网络结构不同。卷积神经网络的网络连接具有局部连接、参数共享的特点。 局部连接:是相对于普通神经网络的全连接而言的,是指这一层的某个节点只与上一层的部分节点相连。 参数共享:是指一层中多个节点的连接共享相同的一组参数。

    01

    双流网络介绍

    双流CNN通过效仿人体视觉过程,对视频信息理解,在处理视频图像中的环境空间信息的基础上,对视频帧序列中的时序信息进行理解,为了更好地对这些信息进行理解,双流卷积神经网络将异常行为分类任务分为两个不同的部分。单独的视频单帧作为表述空间信息的载体,其中包含环境、视频中的物体等空间信息,称为空间信息网络;另外,光流信息作为时序信息的载体输入到另外一个卷积神经网络中,用来理解动作的动态特征,称为时间信息网络,为了获得比较好的异常行为分类效果,我们选用卷积神经网络对获得的数据样本进行特征提取和分类,我们将得到的单帧彩色图像与单帧光流图像以及叠加后的光流图像作为网络输入,分别对图像进行分类后,再对不同模型得到的结果进行融合。双流卷积神经网络结构如下图所示:

    02

    人工智能:卷积神经网络及YOLO算法 入门详解与综述(二)

    经过前六章的阅读,我从三个世界、数据法则、信息纽带、知识升华、自然智能以及人工智能六个方面对于信息科学技术与创新有了深层次的认识与了解。从对于三个世界的描述中,我了解到了物理、生物和数字世界的区别和联系。同时也明白了物质、能量与数据构成了人类所赖以生存和发展的客观和主观世界。通过这样的三个世界基本底层架构的认知,展开了之后的讨论,之后详细地了解到数据的作用,例如数据在生命的产生与演化中起着至关重要的作用,在生命体内DNA中的数据就记录了遗传的基本信息,大脑中的储存数据量与神经元细胞和它们的数量存在着正相关的关系。 数据之间的快速传导使各网络之间可以不考虑地理上的联系而重新组合在一起。信息的传递和交换也变得日益频繁。而在之后对于信息的定义及作用介绍之中,通过对于信息法则的介绍以及对于信息编码过程的展示,让我明白了信息的结构、含义与效用。信息的提取与升华成为知识,我对知识的描述性与程序性、显性与隐性、公共性与私密性有了进一步的认识。由知识的不断进化集合的过程中,自然智能也逐渐彰显出其作用,自然智能也拥有其法则。无独有偶,针对于自然智能的研究也不断启发着人工智能的发展。上一章重点讲述了人工智能的历史、概念、算法以及人工智能的面临障碍。使我对于人工智能的理解有了很大提升。本章就人工智能的应用技术进行了更深层次的分析与讲解。同时本章讨论的课题如下:

    03
    领券