卷积神经网络是深度学习中非常重要的一种神经网络模型,目前在图像识别、语音识别和目标检测等领域应用非常广泛。卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,使用反向传播(Back Propagation,BP)算法进行训练。
如图1所示,假设输入到神经网络中的是一张大小为256*256的图像,第一层隐藏层的神经元个数为241*241。在只考虑单通道的情况下,全连接神经网络输入层到第一层隐藏层的连接数为,也就是说输入层到第一层隐藏层有个参数(1为偏置项参数个数)。而在卷积神经网络中,假设我们使用了一个大小为16*16的卷积核,则输入层到第一层隐藏层的连接数为,由于我们的卷积核是共享的,因此参数个数仅为个。有时候为了提取图像中不同的特征,我们可能会使用多个卷积核,假设这里我们使用了100个大小为16*16的卷积核,则输入层到第一层隐藏层的参数个数也仅为,这依然远远少于全连接神经网络的参数个数。
深度学习是一种人工神经网络的应用,其应用范围包括自然语言处理、计算机视觉、语音识别等等。其中,卷积神经网络(Convolutional Neural Network,CNN)是一种应用广泛的图像识别模型,其用于解决计算机视觉领域中的图像分类、目标检测、图像分割等问题。本文将详细介绍卷积神经网络的原理、结构和应用。
这节课就进入了正题讲起了卷积神经网络(Convolutional Neural Network),这应该是目前最流行的神经网络了,很多目标追踪算法和现代的应用都用到了卷积神经网络,学好这个才能算是入了深度学习的门,以前学过相关理论,因此这篇就写得简单点,主要是记录一下相应的知识点,加强一些概念性东西的理解。
对于普通的神经网络,首先收到输入数据,然后通过若干的隐藏层的转换得到输出。每个隐藏层是由一组神经元组成的,并且这些神经元与前一层进行全连接。在单层中的每个神经元都是完全独立的,不会与其他神经元共享任何连接。最后一个全连接层又称为输出层,在分类任务中,它代表了每个类别的得分。常规的神经网络不能很好地扩展到整个图像。在CIFAR-10数据集中,图片的大小只有32*32*3 ,所以全连接的神经网络在第一个隐藏层中就需要 个权重,这看起来还是可以接受的一个数据量,但是如果图片更大,常规的神经网络就不能很好地使用了。显然易见的是,全连接这样的形式带来参数量巨大的问题, 会导致性能的浪费和过拟合问题。
卷积神经网络最早是主要用来处理图像信息。如果用全连接前馈网络来处理图像时,会存在以下两个问题:
纵观过去两年,“深度学习”领域已经呈现出巨大发展势头。在计算机视觉领域,深度学习已经有了较大进展,其中卷积神经网络是运用最早和最广泛的深度学习模型,所以今天就和大家分享下卷积神经网络的工作原理。
纵观过去两年,“深度学习”领域已经呈现出巨大发展势头。在计算机视觉领域,深度学习已经有了较大进展,其中卷积神经网络是运用最早和最广泛的深度学习模型,所以今天就和大家分享下卷积神经网络的工作原理。 首先来聊聊什么是深度学习? 什么是深度学习 “Deep learningis abranch of machine learning based on a set of algorithms thatattempt to model highlevel abstractions in databy using a
本文是对卷积神经网络的基础进行介绍,主要内容包括卷积神经网络概念、卷积神经网络结构、卷积神经网络求解、卷积神经网络LeNet-5结构分析、卷积神经网络注意事项。
卷积神经网络之父YannLeCuu在1988年提出卷积神经网络时,将这种网络命名为LeNet。现在的卷积神经网络都是基于类似LeNet的网络构架。下图是一个简单的卷积神经网络的图例。 一个卷积神经网络由一个或多个卷积层(Convolution)+池化层(Pooling),再加上一个全连结的前向神经网络组成。 卷积层Convolution 前面咱们已经知道图像卷积操作的原理了。一个卷积核滑动作用在一个图像上,能得到图像的一个对应的特征地图FeatureMap或者激活地图ActivationMap。之所以称为特
人工神经网络(Artificial Neural Networks,ANN)是一种模拟生物神经系统的结构和行为,进行分布式并行信息处理的算法数学模型。ANN通过调整内部神经元与神经元之间的权重关系,从而达到处理信息的目的。而卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它由若干卷积层和池化层组成,尤其在图像处理方面CNN的表现十分出色。
受Hubel和Wiesel对猫视觉皮层电生理研究启发,有人提出卷积神经网络(CNN),Yann Lecun 最早将CNN用于手写数字识别并一直保持了其在该问题的霸主地位。近年来卷积神经网络在多个方向持续发力,在语音识别、人脸识别、通用物体识别、运动分析、自然语言处理甚至脑电波分析方面均有突破。
本系列为 斯坦福CS231n 《深度学习与计算机视觉(Deep Learning for Computer Vision)》的全套学习笔记,对应的课程视频可以在 这里 查看。更多资料获取方式见文末。
文章首发于公众号【编程求职指南】 卷积神经网络( Convolutional Neural Network, CNN): 是一种常见的深度学习架构,受生物自然视觉认知机制(动物视觉皮层细胞负责检测光学信号)启发而来,是一种特殊的多层前馈神经网络。它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。 一般神经网络VS卷积神经网络: 相同点:卷积神经网络也使用一种反向传播算法(BP)来进行训练 不同点:网络结构不同。卷积神经网络的网络连接具有局部连接、参数共享的特点。 局部连接:是相对于普通神经网络的全连接而言的,是指这一层的某个节点只与上一层的部分节点相连。 参数共享:是指一层中多个节点的连接共享相同的一组参数。
卷积神经网络(Convolutional Neural Network, CNN),对于图像处理有出色表现,在计算机视觉中得到了广泛的应用。
卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。它包括卷积层(alternating convolutional layer)和池层(pooling layer)。
王小新 编译自 Towards Data Science 量子位 出品 | 公众号 QbitAI 在深度学习中,有许多不同的深度网络结构,包括卷积神经网络(CNN或convnet)、长短期记忆网络(LSTM)和生成对抗网络(GAN)等。 在计算机视觉领域,对卷积神经网络(简称为CNN)的研究和应用都取得了显著的成果。CNN网络最初的诞生收到了动物视觉神经机制的启发,目前已成功用于机器视觉等领域中。 技术博客Towards Data Science最近发布了一篇文章,作者Suki Lau。文章讨论了在卷积神经
在机器视觉的概念中,图像识别是指软件具有分辨图片中的人物、位置、物体、动作以及笔迹的能力。计算机可以应用机器视觉技巧,结合人工智能以及摄像机来进行图像识别。
卷积神经网络CNN Convolutional Neural Networks是包含卷积计算且具有深度结构的前馈神经网络,是深度学习的代表算法之一。
本系列为吴恩达老师《深度学习专项课程(Deep Learning Specialization)》学习与总结整理所得,对应的课程视频可以在这里查看。
达观数据深度学习资料之卷积神经网络 (上篇) 1深度学习背景 深度学习是近十年来人工智能领域取得的最重要的突破之一,通过建立类似于人脑的分层模型结构对输入数据逐级提取从底层到高层的特征从而能很好
1958年,计算科学家Rosenblatt提出了由两层神经元组成的神经网络,并将之命名为“感知器”(Perceptron)。 感知器有两个层次:输入层和输出层。 输入层里的“输入单元”只负责传输数据,不做计算。 输出层里的“输出单元”则需要对前面一层的输入进行计算。 感知器是当时首个可以学习的人工神经网络。Rosenblatt现场演示了其学习识别简单图像的过程。
我们介绍了人工神经网络,以及它的训练和使用。我们用它来识别了手写数字,然而,这种结构的网络对于图像识别任务来说并不是很合适。本文将要介绍一种更适合图像、语音识别任务的神经网络结构——卷积神经网络(Convolutional Neural Network, CNN)。说卷积神经网络是最重要的一种神经网络也不为过,它在最近几年大放异彩,几乎所有图像、语音识别领域的重要突破都是卷积神经网络取得的,比如谷歌的GoogleNet、微软的ResNet等,打败李世石的AlphaGo也用到了这种网络。本文将详细介绍卷积神经网络以及它的训练算法,以及动手实现一个简单的卷积神经网络。
通过一张图像来解释人工智能、机器学习。深度学习三者关系。假设让机器模拟人脑,分辨羊,猪,牛三种动物: (1)人工智能就是为机器赋予人的智能,模拟人脑分辨过程; (2)机器学习通过手动特征提取图像特征、设计算法区别特征,最后进行分类,给数据让机器自己学习去进行分辨,但在手动特征提取过程中工程庞大,逻辑复杂非常耗时,依恋经验; (3)深度学习是一种高效的机器学习算法,将特征提取与算法融合到一起让机器学习进行分辨。 三者关系如下图所示:
【编者按】三大牛Yann LeCun、Yoshua Bengio和Geoffrey Hinton在深度学习领域的地位无人不知。为纪念人工智能提出60周年,最新的《Nature》杂志专门开辟了一个“人工智能 + 机器人”专题 ,发表多篇相关论文,其中包括了Yann LeCun、Yoshua Bengio和Geoffrey Hinton首次合作的这篇综述文章“Deep Learning”。本文为该综述文章中文译文的下半部分,详细介绍了CNN、分布式特征表示、RNN及其不同的应用,并对深度学习技术的未来发展进行展
【AI科技大本营导读】深度卷积神经网络是这一波 AI 浪潮背后的大功臣。虽然很多人可能都已经听说过这个名词,但是对于这个领域的相关从业者或者科研学者来说,浅显的了解并不足够。近日,约克大学电气工程与计算机科学系的 Isma Hadji 和 Richard P. Wildes 发表了一篇《我们该如何理解卷积神经网络?》的论文:
在科学研究中,从方法论上来讲,都应“先见森林,再见树木”。当前,人工智能学术研究方兴未艾,技术迅猛发展,可谓万木争荣,日新月异。对于AI从业者来说,在广袤的知识森林中,系统梳理脉络,才能更好地把握趋势。为此,我们精选国内外优秀的综述文章,开辟“综述专栏”,敬请关注。
最早的卷积神经网络是Alexander Waibel在1987[5]年提出的延时神经网络(TDNN)。TDNN是一种应用于语音识别问题的卷积神经网络。它使用FFT预处理的语音信号作为输入,它的隐藏层由两个一维卷积核组成,用于提取频域中不变的平移特征[6]。在TDNN出现之前,人工智能领域在BP神经网络(back-propagation)的研究方面取得了突破性进展[7],因此TDNN能够使用BP框架进行学习。在最初作者的对比实验中,在相同条件下,TDNN的性能优于隐马尔可夫模型(HMM),后者是80年代语音识别的主流算法[6]。
深度卷积神经网络是这一波 AI 浪潮背后的大功臣。虽然很多人可能都已经听说过这个名词,但是对于这个领域的相关从业者或者科研学者来说,浅显的了解并不足够。近日,约克大学电气工程与计算机科学系的 Isma Hadji 和 Richard P. Wildes 发表了一篇《我们该如何理解卷积神经网络?》的论文:
在前面的两篇文章《一步步提高手写数字的识别率(1)》和《一步步提高手写数字的识别率(2)》中,我们分别介绍了使用Softmax回归和神经网络来实现手写数字识别,其准确率分别在92和98%左右,这在机器学习领域是一个非常不错的准确率,如果我们采用卷积神经网络,准确率还可以进一步提升。
👆点击“博文视点Broadview”,获取更多书讯 计算机视觉行业,经历了从特征工程到深度学习的历史性变迁。近些年来随着神经网络和边缘计算的发展,计算机视觉成为了人工智能行业最先成熟的一个发展分支,广泛应用在工业、交通、后勤、农业、医疗等领域。 01 计算机视觉的发展历程 计算机视觉经历了从特征工程到深度学习的发展阶段,而深度学习又发展出卷积神经网络(Convolutional Neural Network)和视觉转换器(Vision Transformer)的不同实现方式。 传统的特征工程使用大量的
本文主要介绍了计算机视觉领域中的卷积神经网络在图像分类、物体检测、语义分割和人脸识别等任务中的应用。通过详细的实战案例,展示了如何使用卷积神经网络解决实际问题。同时,本文还介绍了如何使用 TensorFlow 实现卷积神经网络,包括数据读取、网络结构、训练和评估等步骤。
双流CNN通过效仿人体视觉过程,对视频信息理解,在处理视频图像中的环境空间信息的基础上,对视频帧序列中的时序信息进行理解,为了更好地对这些信息进行理解,双流卷积神经网络将异常行为分类任务分为两个不同的部分。单独的视频单帧作为表述空间信息的载体,其中包含环境、视频中的物体等空间信息,称为空间信息网络;另外,光流信息作为时序信息的载体输入到另外一个卷积神经网络中,用来理解动作的动态特征,称为时间信息网络,为了获得比较好的异常行为分类效果,我们选用卷积神经网络对获得的数据样本进行特征提取和分类,我们将得到的单帧彩色图像与单帧光流图像以及叠加后的光流图像作为网络输入,分别对图像进行分类后,再对不同模型得到的结果进行融合。双流卷积神经网络结构如下图所示:
来源: SigAI 作者: AI学习与实践平台 导言 在机器视觉和其他很多问题上,卷积神经网络取得了当前最好的效果,它的成功促使我们思考一个问题,卷积神经网络为什么会这么有效?在本文中,SIGAI将为大家分析卷积神经网络背后的奥秘。 思想起源 在各种深度神经网络结构中,卷积神经网络是应用最广泛的一种,它由LeCun在1989年提出[1]。卷积神经网络在早期被成功应用于手写字符图像识别[1][2][3]。2012年更深层次的AlexNet网络[4]取得成功,此后卷积神经网络蓬勃发展,被广泛用于各个领域,在很多
在大风中紧紧抓住你的帽子,紧紧抓住你的希望,别忘了给你的钟上发条。明天是新的一天。 by怀特 首先祝大家平安夜快乐,明天的圣诞节快乐~ 这周我们用最通俗的解释方法来聊聊最近几年非常火热的CNN卷积神经网络,并以最基础的LeNet-5为大家分析基本的卷积神经网络元部件,让大家能够在短时间内对CNN有更为直观的理解和认识。 1 BP神经网络在图像处理技术上的缺点 假设现在我们需要解决的任务是手写体数字的识别,根据前几次学习,我们的第一反应是采用BP神经网络来做一个分类问题。我们假设图片的大小是50*50,那
全连接层,输出的是一个一维向量,参数跟卷积层一样。一般将全连接置于卷积神经网络的后几层。权重值的初始化采用xavier,偏置初始化为0.
感知机(Perceptron)是 Frank Rosenblatt 在1957年提出的概念,其结构与MP模型类似,一般被视为最简单的人工神经网络,也作为二元线性分类器被广泛使用。通常情况下指单层的人工神经网络,以区别于多层感知机(Multilayer Perceptron)。尽管感知机结构简单,但能够学习并解决较复杂问题
距离上次写博客已经好久好久好久了,真是懈怠的生活节奏,整天混吃等死玩游戏,前些日子做毕业设计时总算又学了点新东西。学了一点深度学习和卷积神经网络的知识,附带着详细学习了一下前段时间我觉得比较有意思的图像风格转换。毕竟是初学,顺便把神经网络方面的知识也写在前面了,便于理解。若有不对的地方的话,希望指正。 主要参考的文献有《A Neural Algorithm of Artistic Style》和《Perceptual Losses for Real-Time Style Transfer a
深度学习基础理论-CNN篇 卷积神经网络的基本结构 总体来说,卷积神经网络是一种层次模型(hierarchical model),其输入是原始数据(raw date),如RGB 图像、原始音频数据等
本文将以 Alex-Net、VGG-Nets、Network-In-Network 为例,分析几类经典的卷积神经网络案例。
池化操作通常也叫做子采样(Subsampling)或降采样(Downsampling),在构建卷积神经网络时,往往会用在卷积层之后,通过池化来降低卷积层输出的特征维度,有效减少网络参数的同时还可以防止过拟合现象。池化操作可以降低图像维度的原因,本质上是因为图像具有一种“静态性”的属性,这个意思是说在一个图像区域有用的特征极有可能在另一个区域同样有用。因此,为了描述一个大的图像,很直观的想法就是对不同位置的特征进行聚合统计。例如,可以计算图像在固定区域特征上的平均值(或最大值)来代表这个区域的特征。
计算机视觉(Computer Vision)包含很多不同类别的问题,如图片分类、目标检测、图片风格迁移、人工图片合成等等。
经过前六章的阅读,我从三个世界、数据法则、信息纽带、知识升华、自然智能以及人工智能六个方面对于信息科学技术与创新有了深层次的认识与了解。从对于三个世界的描述中,我了解到了物理、生物和数字世界的区别和联系。同时也明白了物质、能量与数据构成了人类所赖以生存和发展的客观和主观世界。通过这样的三个世界基本底层架构的认知,展开了之后的讨论,之后详细地了解到数据的作用,例如数据在生命的产生与演化中起着至关重要的作用,在生命体内DNA中的数据就记录了遗传的基本信息,大脑中的储存数据量与神经元细胞和它们的数量存在着正相关的关系。 数据之间的快速传导使各网络之间可以不考虑地理上的联系而重新组合在一起。信息的传递和交换也变得日益频繁。而在之后对于信息的定义及作用介绍之中,通过对于信息法则的介绍以及对于信息编码过程的展示,让我明白了信息的结构、含义与效用。信息的提取与升华成为知识,我对知识的描述性与程序性、显性与隐性、公共性与私密性有了进一步的认识。由知识的不断进化集合的过程中,自然智能也逐渐彰显出其作用,自然智能也拥有其法则。无独有偶,针对于自然智能的研究也不断启发着人工智能的发展。上一章重点讲述了人工智能的历史、概念、算法以及人工智能的面临障碍。使我对于人工智能的理解有了很大提升。本章就人工智能的应用技术进行了更深层次的分析与讲解。同时本章讨论的课题如下:
在机器视觉和其他很多问题上,卷积神经网络取得了当前最好的效果,它的成功促使我们思考一个问题,卷积神经网络为什么会这么有效?在本文中,SIGAI将为大家分析卷积神经网络背后的奥秘。
原文标题:Understanding deep Convolutional Neural Networks with a practical use-case in Tensorflow and Keras 作者:Ahmed Besbes 翻译:苏金六 校对:韩海畴 本文长度为10451字,建议阅读10分钟 本文通过数据集和应用案例,详细分析卷积神经网络,手把手教你用Keras和Tensorflow进行实战。 深度学习是目前最热门的人工智能话题之一。它是部分基于生物学解释的算法合集,在计算机视觉、自
本文是机器学习算法地图的下篇,系统地整理了深度学习算法,整张图的设计风格与机器学习算法地图保持一致。从去年底就开始酝酿深度学习算法地图,然而工程浩大。这张图是SIGAI算法工程师集体智慧的结晶,也是在研发SIGAI核心产品-简单易用的机器学习框架过程中的副产品。由于深度学习的算法变种太多,而且处于高速发展期,因此难免会有疏漏,后续版本将不断完善与优化。
这是专栏《AI初识境》的第2篇文章。所谓初识,就是对相关技术有基本了解,掌握了基本的使用方法。
领取专属 10元无门槛券
手把手带您无忧上云