首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pytorch进行CIFAR-10分类(2)定义卷积神经网络

1、简述 官网tutorial中显示图片的那部分我就直接省略了,因为跟训练网络无关,只是for fun 这一步骤虽然代码量很少,但是却包含很多难点和重点,执行这一步的代码需要包含以及神经网络工具箱...torch.nn、以及神经网络函数torch.nn.functional,如果有兴趣的同学去看一下官网的Docs,会发现这俩模块所占的篇幅是相当相当的长啊,不知道一下午能不能看完…....看一下nn.Module的详细介绍 ? 可知,nn.Module是所有神经网络的基类,我们自己定义任何神经网络,都要继承nn.Module!class Net(nn.Module): b....例如Conv2d(1,20,5)的意思就是说,输入是1通道的图像,输出是20通道,也就是20个卷积核,卷积核是5*5,其余参数都是用的默认值 c. pooling layers ?...比如此例中的Relu其实没有可学习的参数,只是进行一个运算而已,所以使用的就是functional中的relu函数, 而卷积层和全连接层都有可学习的参数,所以用的是nn.Module中的类。

97720

卷积神经网络中的Winograd快速卷积算法

目录 写在前面 问题定义 一个例子 F(2, 3) 1D winograd 1D to 2D,F(2, 3) to F(2x2, 3x3) 卷积神经网络中的Winograd 总结 参考 博客:blog.shinelee.me...卷积神经网络中的Winograd 要将Winograd应用在卷积神经网络中,还需要回答下面两个问题: 上面我们仅仅是针对一个小的image tile,但是在卷积神经网络中,feature map的尺寸可能很大...在卷积神经网络中,feature map是3维的,卷积核也是3维的,3D的winograd该怎么做?...注意图中的Matrix Multiplication,对应3维卷积中逐channel卷积后的对应位置求和,相当于\((m+r-1)^2\)个矩阵乘积,参与乘积的矩阵尺寸分别为\(\lceil H / m...只适用于较小的卷积核和tile(对大尺寸的卷积核,可使用FFT加速),在目前流行的网络中,小尺寸卷积核是主流,典型实现如\(F(6\times 6, 3\times 3)\)、\(F(2\times 2

2.4K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    深入理解卷积神经网络中的卷积

    卷积神经网络是一种特殊的神经网络结构,是自动驾驶汽车、人脸识别系统等计算机视觉应用的基础,其中基本的矩阵乘法运算被卷积运算取代。它们专门处理具有网格状拓扑结构的数据。...神经网络的研究经历了一个寒冷的冬天,直到2012年,多伦多大学的一组研究人员在著名的ImageNet挑战赛中进入了一个基于CNN的模型(AlexNet),最终以16.4%的错误率赢得了比赛。...在卷积运算中,首先将核翻转180度,然后应用于图像。卷积的基本性质是将一个核与一个离散的单位脉冲进行卷积,在脉冲的位置上得到一个核的拷贝。...卷积运算同样遵循平移不变性和局部性的性质。 ? 注意: 尽管这两个操作稍有不同,但是所使用的核是否对称并不重要。 结论: 在这篇文章中,我们简要讨论了卷积神经网络的历史和一些特性。...我们讨论了卷积这个错误的说法,即在各种文本中经常提到的卷积运算其实是互相关运算。这种差别很细微,但却很有用,每个进入、练习或经验丰富的计算机视觉领域的人都应该知道。

    1.2K20

    理解卷积神经网络中的四种卷积

    卷积现在可能是深度学习中最重要的概念。正是靠着卷积和卷积神经网络,深度学习才超越了几乎其他所有的机器学习手段。这期我们一起学习下深度学习中常见的卷积有哪些? 1....在卷积神经网络中,一般情况下,卷积核越大,感受野(receptive field)越大,看到的图片信息越多,所获得的全局特征越好。...这也是现在深度卷积神经网络虽然效果拔群,但是一直为人诟病的原因之一。 2. 扩张卷积 ?...有大佬一句话总结:转置卷积相对于卷积在神经网络结构的正向和反向传播中做相反的运算。其实还是不是很理解。...深度可分离卷积 在神经网络中,我们通常使用称为深度可分离卷积的东西。这将执行空间卷积,同时保持通道分离,然后进行深度卷积。

    69550

    卷积神经网络的卷积层_卷积神经网络详解

    weight中,并生成一个bias; 上图详细描述了BN层计算原理以及如何融合卷积层和BN层,这里进行验证: 定义三个模型: 定义模型1 : 一层卷积层和一层BN层网络 import numpy as...这里模型1为conv+bn,这里对卷积层和BN层进行了初始化,特别是BN层的移动平均和方差初始化,因为这个数值默认初始化是0,是通过训练迭代出来的; 模型2为conv,并且我们用模型1的卷层权重去初始化模型...2; 模型3为conv,这里我们合并模型1的卷层和BN层,然后用合并后的参数初始化模型3; 如果计算没问题的话,那么相同输入情况下,模型2输出手动计算BN后,应该和模型1输出一样,模型1的卷积和bn合并后...这里手动计算模型2的卷积过程,然后和模型2输出进行对比。...合并Conv和BN层 在开头图中详细说明了如何合并卷积和BN层,这里把模型1的两层合并为一层,也就是模型3.

    1.6K21

    卷积神经网络中的自我注意

    其中,C是通道的数量,N是所有其他维度的乘积(稍后我们将看到代码) 对x进行1x1卷积,得到f, g, h。这将改变通道的数量从C到C*: ? ?...计算f(x)和g(x)中像素位置之间的一系列softmax权重: ? 这些权重称为“注意力图”,本质上是量化图像中像素j相对于像素i的“重要性”。...由于这些权重(β)是在特征集的整个高度和宽度上计算的,因此接收场不再局限于小内核的大小。 将自我注意层的输出计算为: ? ? 这里,v是另一个1x1卷积的输出。...作为最后一步,我们将输入特征x添加到输出的加权中(gamma是另一个可学习的标量参数): ?...第17行:恢复特征的原始形状 此实现与本文中描述的算法有所不同(但等效),因为它将1x1卷积v(x)和h(x)组合在一起,并且调用为h(x)或“值”。组合的1x1转换层具有C个输入通道和C个输出通道。

    78810

    Python从0到100(八十四):神经网络-卷积神经网络训练CIFAR-10数据集

    测试批次正好包含从每个类中随机选择的 1000 张图像。训练批次以随机顺序包含剩余的图像,但某些训练批次可能包含来自一个类的图像多于另一个类的图像。...CIFAR-100中的100个子类被分为20个大类。每个图像都有一个“fine”标签(它所属的子类)和一个“coarse”标签(它所属的大类)。...CIFAR-10数据集与MNIST数据集对比维度不同:CIFAR-10数据集有4个维度,MNIST数据集有3个维度(CIRAR-10的四维: 一次的样本数量, 图片高, 图片宽, 图通道数 -> N H...图像内容不同:CIFAR-10数据集展示的是各种不同的物体(猫、狗、飞机、汽车…),MNIST数据集展示的是不同人的手写0~9数字。...return dictdict = unpickle('D:\PycharmProjects\model-fuxian\CIFAR\cifar-10-batches-py\data_batch_1')4.卷积神经网络训练此处参考

    8510

    【深度学习篇】--神经网络中的卷积神经网络

    2、卷积层理解 CNN里面最重要的构建单元就是卷积层 神经元在第一个卷积层不是连接输入图片的每一个像素,只是连接它们感受野的像素,以此类推, 第二个卷积层的每一个神经元仅连接位于第一个卷积层的一个小方块的神经元...,这种情况下,输出神经元个数等于输入神经元个数除以步长 ceil(13/5)=3,当步长为1时卷积完后的长宽一样,像素点一样,维度一样(输入神经元的个数和输出神经元的个数一样)  4、卷积的计算 假设有一个...5*5的图像,使用一个3*3的filter(卷积核)进行卷积,想得到一个3*3(没有使用Zero_padding,因为下一层和上一层长宽不一样)的Feature Map。...结论: 在一个卷积层里面可以有多个卷积核,每一个卷积核可以有多个维度 每一个卷积核生成一个Feature_map,因为有两个卷积核,所以生成两个Feacture_Map 7、卷积核的设置 Vertical...X = tf.placeholder(tf.float32, shape=(None, height, width, channels)) # strides=[1, 2, 2, 1] 中第一最后一个为

    53110

    如何理解卷积神经网络中的1*1卷积?

    我们都知道,卷积核的作用在于特征的抽取,越是大的卷积核尺寸就意味着更大的感受野,当然随之而来的是更多的参数。...但是在学习卷积神经网络的过程中,我们常常会看到一股清流般的存在—1*1的卷积! 比如在残差网络的直连里: ? 残差网络的Bootleneck残差模块里: ?...在GoogleNet的Inception模块里: ? 都有1*1卷积核的出现,那么它到底是做什么的?我们应该如何理解1*1卷积的原理?...举个例子,比如某次卷积之后的结果是W*H*6的特征,现在需要用1*1的卷积核将其降维成W*H*5,即6个通道变成5个通道: 如下图就是一个W*H*6的特征,而1*1的卷积核在图上标出,卷积核自身的厚度也是...通过一次卷积操作,W*H*6将变为W*H*1,这样的话,使用5个1*1的卷积核,显然可以卷积出5个W*H*1,再做通道的串接操作,就实现了W*H*5。

    1.6K10

    C++ 中的卷积神经网络 (CNN)

    有很多卷积神经网络文章解释了 CNN 是什么以及它的用途是什么,而本文将用 C++ 编写一个 CNN 和一个名为 mlpack 的库来对MNIST数据集进行分类。...二、MINST数据集 我们要使用的数据包含在一个 CSV 文件中,由 0 到 9 的数字图像组成,其中列包含标签,行包含特征,但是当我们要将数据加载到矩阵中时,数据将被转置,并且提到哪个特征的标签也将被加载...让我们处理和删除描述每一行中包含的内容的列,如我在数据部分所述,并为训练、验证和测试集的标签和特征创建一个单独的矩阵。...它的标签从 1 而不是 0 开始,因此我们在标签中添加了 1。...三、卷积框架 现在让我们看一下我们将要定义的简单卷积架构。

    1.5K20

    如何理解卷积神经网络中的1*1卷积

    我们都知道,卷积核的作用在于特征的抽取,越是大的卷积核尺寸就意味着更大的感受野,当然随之而来的是更多的参数。...但是在学习卷积神经网络的过程中,我们常常会看到一股清流般的存在—1*1的卷积! 比如在残差网络的直连里: ? 残差网络的Bootleneck残差模块里: ?...在GoogleNet的Inception模块里: ? 都有1*1卷积核的出现,那么它到底是做什么的?我们应该如何理解1*1卷积的原理?...举个例子,比如某次卷积之后的结果是W*H*6的特征,现在需要用1*1的卷积核将其降维成W*H*5,即6个通道变成5个通道: 如下图就是一个W*H*6的特征,而1*1的卷积核在图上标出,卷积核自身的厚度也是...通过一次卷积操作,W*H*6将变为W*H*1,这样的话,使用5个1*1的卷积核,显然可以卷积出5个W*H*1,再做通道的串接操作,就实现了W*H*5。

    1.2K100

    深度学习(二)神经网络中的卷积和反卷积原理

    在深度学习的过程中,很多神经网络都会用到各种卷积核来进行操作,那么我们就简单讲一下卷积的原理和实现过程。...那么卷积在神经网络中的作用是什么呢?一开始的传统神经网络是没有卷积层的,都是隐藏层加生全连接层的结构,这样在中间得到的特征都是线性的,不能提取到一个局部的特征。...而卷积神经网络的出现解决了这个问题,通过对一个局部区域进行卷积操作得到这个局部区域的特征值传入下层大大提升了神经网络提取特征的能力,并且还减小了数据的大小。 那么看看卷积的过程: ?...)一小块区域的特征,而不必像传统神经网络一样一个值一个值的提取。...二.反卷积   既然有卷积过程那么肯定也有反卷积的过程对不对。不然怎么进行卷积神经网络的反向传导呢?嘿嘿 反卷积通常用于将低维特征映射成高维输入,与卷积操作的作用相反。还是看图比较舒服是吧: ?

    82510

    形象理解卷积神经网络(二)——卷积神经网络在图像识别中的应用

    卷积神经网络之父YannLeCuu在1988年提出卷积神经网络时,将这种网络命名为LeNet。现在的卷积神经网络都是基于类似LeNet的网络构架。下图是一个简单的卷积神经网络的图例。...一个卷积神经网络由一个或多个卷积层(Convolution)+池化层(Pooling),再加上一个全连结的前向神经网络组成。 卷积层Convolution 前面咱们已经知道图像卷积操作的原理了。...需要注意的是,在卷积神经网络的训练过程中,不仅前向神经网络的权重需要训练,卷积层中的卷积核,也是通过训练得到的。所以初始时,我们只定义卷积层的层数,以及每一层有多少卷积核,不对卷积核本身做定义。...当我们研究训练好的卷积核就能发现,神经网络训练出的卷积核很多对人来说是没有对应意义的。...下图是一个卷积神经网络在做物体识别中,对于人脸识别训练出的卷积核的一个图例。 这里介绍了一个基本的卷积神经网络的拓扑结构。在实际应用中,还会有一些细节上的考虑。

    1.4K100

    卷积神经网络学习路线(一)| 卷积神经网络的组件以及卷积层是如何在图像中起作用的?

    前言 这是卷积神经网络学习路线的第一篇文章,这篇文章主要为大家介绍卷积神经网络的组件以及直观的为大家解释一下卷积层是如何在图像中发挥作用的。...卷积神经网络的组件 从AlexNet在2012年ImageNet图像分类识别比赛中以碾压性的精度夺冠开始,卷积神经网络就一直流行到了现在。...现在,卷积神经网络已经被广泛的应用在了图像识别,自然语言处理,语音识别等领域,尤其在图像识别中取得了巨大的成功。本系列就开始带大家一起揭开卷积神经网络的神秘面纱,尝试窥探它背后的原理。...卷积层 卷积层(Convolution Layer)是卷积神经网络的核心组件,它的作用通常是对输入数据进行特征提取,通过卷积核矩阵对原始数据中隐含关联性进行抽象。原始的二维卷积算子的公式如下: ?...后记 本节是卷积神经网络学习路线(一),主要讲了卷积神经网络的组件以及卷积层是如何在图像中起作用的?希望对大家有帮助。

    1.8K20

    卷积神经网络对图片分类-中

    接上篇:卷积神经网络对图片分类-上 5 池层(Pooling Layers) 池层通常用在卷积层之后,池层的作用就是简化卷积层里输出的信息, 减少数据维度,降低计算开销,控制过拟合。...7 更深的卷积神经网络结构 一般情况下在卷积神经网络结构中不仅仅只有卷积层,池层,全连接层,还有其它一些层穿插在卷积层之间。可以减少出现过拟合,提高学习率,缓解梯度消失等等问题。...所以在第一个卷积层之后,又进入下一个卷积层,那么第一个卷积层的输出就变成了下一个卷积层的输入。第一个卷积层的输入是一个普通的图片,第二个卷积层的输入是从第一个卷积层变化而来的一些特征图像。...以后每一个卷积层的输入,基本上都是上一个卷积层提取出来的特征图像,后面的卷积层组合之前的卷积层里提取的简单特征, 得到更复杂的特征数据。...当数据一层一层通过更多的卷积层时,你可以得到的特征图像代表的特征就会更加的复杂。在网络的最后,你也许可以得到一个抽象的物体。如果你想通过可视化方法在卷积神经网络中看到更多的信息。

    66670

    Pytorch-卷积神经网络的运算流程(中)

    而kernel中的3代表对input的x上的三个通道上均进行卷积运算。而multi-kernels中的16泛指包括了blur、edge等16个功能、3代表对每一个通道上的逐渐进行卷积运算。...这里要求可以从结果逆推出bias和kernel的参数值。 那么这种持续的叠加会输出什么结果呢,如下所示 ? 最初的小汽车经过多个卷积层后依次输出的结果如上,神经网络会从这上面提取到不同的特征结构。...总而言之,通过不断地卷积,可以持续提取到不同的特征。 那么在pytorch中,是如何实现这种代码的编写?...# 这种神经网络结构的编写要用到nn.Conv2d # 该API意为进行2D的函数卷积层计算 import torch import torch.nn as nn layer = nn.Conv2d...= torch.rand(1, 1, 28, 28) # 随机代入数据到x out = layer.forward(x) # 进行一次卷积的前向运算 print(out.size()) # 输出结果的

    80310

    NLP教程(8) - NLP中的卷积神经网络

    点击 第11讲-NLP中的卷积神经网络 查看的课件注释与带学解读。...本篇笔记对应斯坦福CS224n自然语言处理专项课程的知识板块:NLP中的卷积神经网络。主要讲解卷积神经网络的结构,及其在NLP场景下的使用方式,一些模块和可调结构。...笔记核心词 卷积神经网络 / CNN 卷积层 池化层 多卷积核 多通道 / Multiple-Channels 卷积核 N-gram filter k-max pooling 文本分类 1.NLP中的卷积神经网络...[2D情况下的卷积] 这里使用 ShowMeAI 深度学习教程 | 卷积神经网络解读 文章中的一个动态计算过程: [卷积运算示例] 1.3 卷积层讲解 [单层卷积:一步] 考虑单词向量 x_{i} \in...它们最初是一样的(GloVe 或者其他初始化)。这两个集合同时作为神经网络的输入。因此,初始化的词向量在神经网络的训练中始终起着重要的作用。在测试中给出看不见的单词可以提高正确理解的几率。

    76641

    pytorch卷积神经网络-卷积的定义(下)

    为更好地理解卷积层,以两张图片对比所示: ? 左侧若采用全连接方式进行学习,则参数量很大。而右侧只提取局部特征(对应点的周边的一些属性)进行学习,可以极大地减少参数量。...我们将这种相乘并累加的操作叫为卷积操作。 这种卷积操作在信号处理中是有明确定义的, ? 这种卷积操作在图像处理领域中有诸多应用, Sharpen(锐化操作) ?...用5*5的核进行卷积计算 这样生成的feature map的size与原图一样,戴氏特征更加突出 相应的也可以进行模糊处理 Blur(模糊处理) ? 模糊处理即取周围点进行相乘累加。...那么经过了卷积运算后,生成的feature map为 ? 每次扫描使用不同的核,会得到不同的feature map。

    51310

    pytorch卷积神经网络-卷积的定义(上)

    计算机视觉是深度学习的重要组成部分,而卷积神经网路是计算机的主要研究方向。 在了解卷积神经网络前,我们有必要了解图片的构成。以下张图片为例 ?...对于这类位置相关性的矩阵pytorch是如何处理的? 首先对于全连接层神经网络,将该问题看做数字识别问题时,可以构建出的全连接网络如下。 ?...该全连接型神经网络有输入层、4个隐藏层、带十个节点的输出层。 那么假设数据集图片为28*28型的,将其打平为784。而中间节点全选择为256节点.输出为10个节点。...因此科学家们依据此特点提出了卷积神经网络模型如下图所示: ? 每次先感受一个个可移动的小方块,然后再感受大的区间。相应的不是整个28*28的大图片,而是3*3的小图片。...后续科学家们又提出了权值共享的概念,即每个小窗口的权值W保留,直至一个epoch运算完毕后再进行更新。 这个6层的神经网络有大概60K的参数量,比之前全连接层减少了近5/6。

    65110
    领券