;
2、RDD 中的数据存储与计算
PySpark 中 处理的 所有的数据 ,
数据存储 : PySpark 中的数据都是以 RDD 对象的形式承载的 , 数据都存储在 RDD 对象中 ;
计算方法...中 , 通过 SparkContext 执行环境入口对象 读取 基础数据到 RDD 对象中 , 调用 RDD 对象中的计算方法 , 对 RDD 对象中的数据进行处理 , 得到新的 RDD 对象 其中有...RDD # collect 方法 , 可以查看 RDD 数据 ;
print("RDD 元素: ", rdd.collect())
完整代码示例 :
# 创建一个包含列表的数据
data = [1, 2..., 传入 SparkConf 实例对象作为参数 ;
# 创建 PySpark 执行环境 入口对象
sparkContext = SparkContext(conf=sparkConf)
再后 , 创建一个包含整数的简单列表...;
# 创建一个包含列表的数据
data = [1, 2, 3, 4, 5]
再后 , 并使用 parallelize() 方法将其转换为 RDD 对象 ;
# 将数据转换为 RDD 对象
rdd =