首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

重要突破!大连理工大学团队实现「线驱动连续型机器人多模态感知」登国际权威期刊

大数据文摘转载自机器人大讲堂 你知道什么是连续型机器人吗?这类机器人可以称得上是机器人中的“眼镜蛇”,以其强悍的灵活性和柔顺性著称。它们在医疗介入手术、狭小空间检测、工业及生活辅助等非结构化环境中具有十分广泛的应用场景。 例如用于微创手术的达芬奇Vinci SP介入手术机器人、美国Tesla公司的蛇形充电机器人以及德国Festo公司的柔性机械臂等。 那么问题来了,同是机器人,为什么它们这么灵活?原因在于连续型机器人通过颠覆传统刚性机械臂的结构设计,使得自身具备大量冗余“自由度”,进而实现灵活运动和柔顺变

04
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    CVPR2022 Oral:StreamYOLO-流感知实时检测器

    【GiantPandaCV导语】 自动驾驶技术对延迟要求极高。过去的工作提出了信息流(后文均称Streaming)感知联合评价指标,用于评估算法速度和准确性。本论文提出检测模型对于未来的预测是处理速度和精度均衡的关键。作者建立了一个简单有效的Streaming感知框架。它配备了 一种新的**双流感知模块(Dual Flow Perception,DFP),其中包括捕捉动态Streaming和静态Streaming移动趋势的基本检测特征。此外,作者引 入了一个趋势感知损失(Trend-Aware Loss,TAL)**,并结合趋势因子,为不同移动速度的物体生成自适应权重。本文提出的方法在Argogrse-HD数据集上实展现了竞争性能,与原Baseline相比提高了4.9% mAP。

    02

    ICML 2024 | 具有动态目标感知片段的药物发现

    今天为大家介绍的是来自Sung Ju Hwang团队的一篇论文。基于片段的药物发现是一种在广阔的化学空间中发现药物候选物的有效策略,并已广泛应用于分子生成模型。然而,许多现有的片段提取方法在这些模型中没有考虑目标化学性质或者依赖于启发式规则,现有的基于片段的生成模型也无法在生成过程中使用新发现的目标导向片段更新片段词汇表。为此,作者提出了一种用于药物发现的分子生成框架,称为目标导向片段提取、组装和修改(GEAM)。GEAM由三个模块组成,每个模块分别负责目标导向片段提取、片段组装和片段修改。片段提取模块利用信息瓶颈原理识别对所需目标性质有贡献的重要片段,从而构建一个有效的目标导向片段词汇表。此外,GEAM能够通过片段修改模块探索初始词汇表以外的片段,并通过动态目标导向词汇表更新进一步增强探索能力。作者通过各种药物发现任务的实验表明,GEAM能够通过三个模块的生成循环有效地发现药物候选物。作者的代码可以在https://github.com/SeulLee05/GEAM获取。

    01

    Dynamic Head: Unifying Object Detection Heads with Attentions

    1、摘要 在目标检测中,定位和分类相结合的复杂性导致了方法的蓬勃发展。以往的工作试图提高各种目标检测头的性能,但未能给出一个统一的视图。在本文中,我们提出了一种新的动态头网络框架,以统一目标检测头部与注意。该方法通过将特征层次间、空间位置间、任务感知输出通道内的多自注意机制相结合,在不增加计算开销的情况下显著提高了目标检测头的表示能力。进一步的实验证明了所提出的动态头在COCO基准上的有效性和效率。有了标准的ResNeXt-101-DCN主干网,我们在很大程度上提高了性能,超过了流行的目标检测器,并在54.0 AP达到了新的最先进水平。此外,有了最新的变压器主干网和额外的数据,我们可以将当前的最佳COCO结果推至60.6 AP的新记录。 2、简介 物体检测是回答计算机视觉应用中“什么物体位于什么位置”的问题。在深度学习时代,几乎所有现代目标检测器[11,23,12,35,28,31,33]都具有相同的范式——特征提取的主干和定位和分类任务的头部。如何提高目标检测头的性能已成为现有目标检测工作中的一个关键问题。 开发一个好的目标检测头的挑战可以概括为三类。首先,头部应该是尺度感知的,因为多个具有极大不同尺度的物体经常共存于一幅图像中。其次,头部应该是空间感知的,因为物体通常在不同的视点下以不同的形状、旋转和位置出现。第三,头部需要具有任务感知,因为目标可以有不同的表示形式(例如边界框[12]、中心[28]和角点[33]),它们拥有完全不同的目标和约束。我们发现最近的研究[12,35,28,31,33]只关注于通过各种方式解决上述问题中的一个。如何形成一个统一的、能够同时解决这些问题的头,仍然是一个有待解决的问题。 本文提出了一种新的检测头,即动态头,将尺度感知、空间感知和任务感知结合起来。如果我们把一个主干的输出(即检测头的输入)看作是一个具有维级×空间×通道的三维张量,我们发现这样一个统一的头可以看作是一个注意学习问题。一个直观的解决方案是在这个张量上建立一个完整的自我注意机制。然而,优化问题将是太难解决和计算成本是不可承受的。 相反地,我们可以将注意力机制分别部署在功能的每个特定维度上,即水平层面、空间层面和渠道层面。尺度感知的注意模块只部署在level维度上。它学习不同语义层次的相对重要性,以根据单个对象的规模在适当的层次上增强该特征。空间感知注意模块部署在空间维度上(即高度×宽度)。它学习空间位置上的连贯区别表征。任务感知的注意模块部署在通道上。它根据对象的不同卷积核响应指示不同的特征通道来分别支持不同的任务(如分类、框回归和中心/关键点学习)。 这样,我们明确实现了检测头的统一注意机制。虽然这些注意机制分别应用于特征张量的不同维度,但它们的表现可以相互补充。在MS-COCO基准上的大量实验证明了我们的方法的有效性。它为学习更好的表示提供了很大的潜力,可以利用这种更好的表示来改进所有类型的对象检测模型,AP增益为1:2% ~ 3:2%。采用标准的ResNeXt-101-DCN骨干,所提出的方法在COCO上实现了54:0%的AP新状态。此外,与EffcientDet[27]和SpineNet[8]相比,动态头的训练时间为1=20,但表现更好。此外,通过最新的变压器主干和自我训练的额外数据,我们可以将目前的最佳COCO结果推至60.6 AP的新纪录(详见附录)。 2、相关工作 近年来的研究从尺度感知、空间感知和任务感知三个方面对目标检测器进行了改进。 Scale-awareness. 由于自然图像中经常同时存在不同尺度的物体,许多研究都认为尺度感知在目标检测中的重要性。早期的研究已经证明了利用图像金字塔方法进行多尺度训练的重要性[6,24,25]。代替图像金字塔,特征金字塔[15]被提出,通过将下采样卷积特征串接一个金字塔来提高效率,已经成为现代目标检测器的标准组件。然而,不同层次的特征通常从网络的不同深度中提取,这就造成了明显的语义差距。为了解决这种差异,[18]提出了从特征金字塔中自下而上的路径增强较低层次的特征。后来[20]通过引入平衡采样和平衡特征金字塔对其进行了改进。最近,[31]在改进的三维卷积的基础上提出了一种金字塔卷积,可以同时提取尺度和空间特征。在这项工作中,我们提出了一个尺度感知注意在检测头,使各种特征级别的重要性自适应的输入。 Spatial-awareness. 先前的研究试图提高物体检测中的空间意识,以更好地进行语义学习。卷积神经网络在学习图像[41]中存在的空间变换方面是有限的。一些工作通过增加模型能力(大小)[13,32]或涉及昂贵的数据扩展[14]来缓解这个问题,这导致了在推理和训练中极高的计算成本。随后,提出了新的卷积算子来改进空间变换的学习。[34]提出使用膨胀卷积来聚合来自指数扩展的接受域的上下文信息。[7]提出了一种可变形的卷积来对具有额外自学习偏移量的

    02

    学界 | CoRL 2018最佳系统论文:如此鸡贼的机器手,确定不是人在控制?

    与物体进行交互的操作是机器人技术中最大的开放问题之一:在开放的世界环境中智能地与以前没有见过的物体进行交互需要可以泛化的感知、基于视觉的闭环控制和灵巧的操作。强化学习为解决这一问题提供了一个很有前景的途径,目前强化学习方向上的工作能够掌握如击球 [1],开门 [2,3],或投掷 [4] 这样的单个技能。为了满足现实世界中对操作的泛化需求,我们将重点关注离策略算法的可扩展学习,并在具体抓取问题的背景下研究这个问题。虽然抓取限制了操作问题的范围,但它仍然保留了该问题中许多最大的挑战:一个抓取系统应该能够使用真实的感知技术可靠、有效地抓取之前没有见过的物体。因此,它是一个更大的机器人操作问题的缩影,为对泛化和多样化的物体进行交互提供了一个具有挑战性和实际可用的模型。

    02

    2019年CCF-腾讯犀牛鸟基金项目课题介绍(三)——自然语言处理及语音识别&大数据&车联网

    CCF-腾讯犀牛鸟基金由腾讯与中国计算机学会联合发起,旨在为全球范围内最具创新力的青年学者搭建产学研合作及学术交流的平台,提供了解产业真实问题,接触业务实际需求的机会,并通过连接青年学者与企业研发团队的产学科研合作,推动双方学术影响力的提升及应用成果的落地,为科技自主研发的探索和创新储备能量。 本年度共设立9个重点技术方向,29项研究命题 申报截止时间:2019年6月15日24:00 上期我们介绍了计算机视觉及模式识别 本文将介绍 自然语言处理及语音识别&大数据&车联网 欢迎海内外青年学者关注并申报。

    04

    腾讯自动驾驶总经理苏奎峰:实时孪生与智能决策

    机器之心报道 机器之心编辑部 5 月 24 日,在机器之心举办的「决策智能产业应用」在线圆桌论坛上,腾讯交通平台部总经理、腾讯自动驾驶总经理苏奎峰发表了主题演讲《实时孪生与智能决策》。 机器之心对苏奎峰的演讲内容进行了不改变原意的整理。感兴趣的小伙伴可以点击阅读原文查看回顾视频。 今天和大家分享的题目是《实时孪生与智能决策》。本次分享内容主要分三个部分: 第一部分为实时孪生整体架构。什么叫实时孪生,我们如何理解实时孪生和数字孪生,这两者有哪些本质上的区别,在下面的分享中,我都会进行简单解释。 第二部分为数据

    01

    Hands on Reinforcement Learning 01

    亲爱的读者,欢迎来到强化学习的世界。初探强化学习,你是否充满了好奇和期待呢?我们想说,首先感谢你的选择,学习本书不仅能够帮助你理解强化学习的算法原理,提高代码实践能力,更能让你了解自己是否喜欢决策智能这个方向,从而更好地决策未来是否从事人工智能方面的研究和实践工作。人生中充满选择,每次选择就是一次决策,我们正是从一次次决策中,把自己带领到人生的下一段旅程中。在回忆往事时,我们会对生命中某些时刻的决策印象深刻:“还好我当时选择了读博,我在那几年找到了自己的兴趣所在,现在我能做自己喜欢的工作!”“唉,当初我要是去那家公司实习就好了,在那里做的技术研究现在带来了巨大的社会价值。”通过这些反思,我们或许能领悟一些道理,变得更加睿智和成熟,以更积极的精神来迎接未来的选择和成长。

    02
    领券