首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

到Dask后端的joblib连接: tornado.iostream.StreamClosedError: Stream已关闭

Dask是一个用于并行计算的开源框架,它可以扩展到多个计算节点上,提供高性能的数据处理和分析能力。而joblib是一个用于在Python中进行并行计算的库,它可以将计算任务分发到多个进程或多个计算节点上执行。

在使用Dask和joblib进行并行计算时,有时可能会遇到连接错误的问题,其中一个常见的错误是"tornado.iostream.StreamClosedError: Stream已关闭"。这个错误通常是由于网络连接断开或连接超时导致的。

要解决这个问题,可以尝试以下几个步骤:

  1. 检查网络连接:确保网络连接正常,没有断开或超时的情况发生。可以尝试重新连接网络或更换网络环境。
  2. 检查Dask和joblib的版本兼容性:确保使用的Dask和joblib版本是兼容的。可以查看官方文档或社区支持论坛了解版本兼容性信息。
  3. 检查代码逻辑:检查代码中是否存在错误或逻辑问题,例如错误的参数传递、错误的函数调用等。可以仔细检查代码并进行调试。
  4. 调整并行计算参数:根据具体情况,可以尝试调整并行计算的参数,例如增加超时时间、调整并行度等。可以参考Dask和joblib的文档了解如何设置这些参数。

总结起来,当出现"tornado.iostream.StreamClosedError: Stream已关闭"错误时,需要检查网络连接、版本兼容性、代码逻辑和并行计算参数等方面的问题。根据具体情况进行排查和调整,以解决该错误并保证正常的并行计算。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 13 | Tornado源码分析:BaseIOStream 对象(下)

    hello 大家好 上期我们已经介绍了 tornado.iostream 模块,也整理了核心代码,不知大家是否理解其中的运作原理,本期我们对这部分的源码进行批注并进行总结。 # -*- encoding: utf-8 -*- # !/usr/bin/python """ @File : __init__.py.py @Time : 2020/09/13 15:24 @Author : haishiniu @Software: PyCharm """ import numbers import socket import sys import errno from tornado import ioloop, stack_context from tornado.concurrent import TracebackFuture from tornado.iostream import UnsatisfiableReadError, StreamBufferFullError from tornado.log import app_log, gen_log from tornado.util import errno_from_exception class BaseIOStream(object): def __init__(self, io_loop=None, max_buffer_size=None, read_chunk_size=None, max_write_buffer_size=None): self.io_loop = io_loop or ioloop.IOLoop.current() self.max_buffer_size = max_buffer_size or 104857600 # 每次<fd>.read调用最多读取的字节数 self.read_chunk_size = min(read_chunk_size or 65536,self.max_buffer_size // 2) # 读缓冲区:读缓冲区中的数据分为已经被消费 + 尚未被消费的。 self._read_buffer = bytearray() # 读指针指向第一个尚未被消费的字节。随着缓冲区中的数据被消费,读指针会右移。 # 当读指针大于缓冲区大小时,缓冲区会向右收缩,释放空间。 self._read_buffer_pos = 0 # 读缓冲区的大小(特指未被消费的那部分缓冲区的大小) self._read_buffer_size = 0 # read_bytes()方法的第一个参数 self._read_bytes = None # read callback 当读操作完成之后,会调用该回调函数 self._read_callback = None # read future 当读操作完成时,会将数据或异常信息填充到该对象中; self._read_future = None # 关注的事件 self._state = None # 异步的读取指定数量的字节。 # 如果指定了callback,那么当读取到指定数量的数据之后,会使用数据作为第一个参数调用这个回调函数; # 如果没有指定callback,则返回一个Future对象。 # 本次我们只解析 streaming_callback、partial为 默认值的情况。 def read_bytes(self, num_bytes, callback=None, streaming_callback=None, partial=False): future = self._set_read_callback(callback) assert isinstance(num_bytes, numbers.Integral) self._read_bytes = num_bytes self._read_partial = partial self._streaming_callback = stack_context.wrap(streaming_callback) try: self._try_inline_read() except: if future is not None: future.add_done_callback(lambda f: f.exc

    03

    多线程让可扩展性走进了死胡同

    这是一篇来自Python世界的文章,但是对整个编程领域还是适用的,多线程虽然让我们处理请求更快,但是也是有天花板的,绿色(微线程micro-thread)线程之类才是解决方案。 多线程软件开发解决了大量的问题,尤其是以网络为中心的应用程序,这些程序需要严苛的性能快速响应用户。不幸的是,多线程并不足以解决大规模并发性的问题。 解决这些问题需要改变编程模型,使用异步事件和基于回调机制。在Druva,我们创建了一个基于python库的名为Dhaga来解决大规模并发,而编程模型不需要重大改变。 软件开发人员生活在一个并发的世界。线程如今是一等公民,今天在开发过程中,特别是当您的应用程序执行密集的网络运营,如同Druva一样的inSync系统(网络安全同步产品)。多线程帮助网络操作的编程代码流变得简单和顺序。当我们的应用程序需要增强的性能或改善其可伸缩性,我们可以增加线程的数量。 但是当需要成千上万规模的并发请求,线程是不够的。 我们发现多线程使用有以下缺点: 1. inSync系统客户端需要大量的文件通过网络RPC调用备份到服务器。开发人员加快速度的典型方法是使用线程。但多线程带来的性能却增加内存和CPU的使用成本;开发人员需要在速度和线程数之间保持一个平衡。 2.我们的服务器需要处理inSync系统与成千上万的客户之间并发连接和通知。为了有效地处理连接,我们使用线程来处理请求。但inSync系统客户的不断增加也意味着我们不得不继续增加线程的数量,从而消耗大量服务器的内存和CPU。 3.我们的Web服务器需要处理成千上万的平行的HTTP请求。大部分工作是在接收和发送的数据网络套接字并将其传给inSync系统的后端。导致大多数的线程等待网络操作。导致C10K问题,当有成千上万的同步请求到Web服务器,为每个请求生成一个线程是相当不可扩展的(Scale)。 异步框架的限制 许多异步框架,包括 Twisted扭曲、Tornado龙卷风和asyncore可以帮助开发人员远离使用线程的流行的方式。这些框架依赖非阻塞套接字和回调机制(类似Node.js)。如果我们按原样使用这些框架,我们Druva代码的主要部分必须重构。这不是我们想要做的事。重构代码会增加开发和测试周期,从而阻止我们达到规模要求。鉴于产品的多个部分需要大规模,我们每个人将不得不重构他们——因此增加一倍或两倍的努力。 为了避免改变如此多的代码,我们不得不离开直接使用现有的框架。幸运的是,我们发现一些有用的工具。 因为我们想要控制在网络I / O的代码执行,我们需要一种将一个线程划分为微线程micro-thread的方法。我们发现greenlets。它提供一种非隐式的微线程调度,称为co-routine协程。换句话说。当你想控制你的代码运行时它非常有用。您可以构建自定义计划的微线程,因为你可以控制greenlets什么时候yield暂停。这对我们来说是完美的,因为它给了我们完全控制我们的代码的调度。 Tornado是一个用Python编写的简单的、非阻塞的Web服务器框架,旨在处理成千上万的异步请求。我们使用它的核心组件,IOLoop IOStream。IOLoop是一个非阻塞套接字I / O事件循环;它使用epoll(在Linux上)或队列(BSD和Mac OS X),如果他们是可用的,否则选择()(在Windows上)。IOStream提供方便包装等非阻塞套接字读和写。我们委托所有套接字操作给Tornado,然后使用回调触发代码操作完成(banq注:非常类似Node.js机制)。 这是一个好的开始,但我们需要更多。如果我们在我们的代码中直接用上面的模块,我们大量的RPC代码将不得不改变,通过greenlets调度RPC,确保greenlets不要阻塞(如果greenlets堵塞,它会堵塞整个线程和其他全部),处理来自tornado的回调功能。 我们需要一个抽象来管理和安排greenlets 以避免让它被外部调用堵塞,这个抽象能够超越线程达到大规模可扩展。这个抽象是Dhaga,它能让应用代码流编程起来像传统同步顺序,但是执行是异步的。 Dhaga(来自印地语,这意味着线程)是我们抽象的一个轻量级线程的执行框架。Dhaga类是来源于greenlet,使用堆栈切换在一个操作系统线程中执行多个代码流。一个操作系统的线程中使用协作调度执行多个dhagas。每当一段dhaga等待时(主要是等待一个RPC调用返回),它yield控制权给父一级(也就是说,是创建它的操作系统级别线程的执行上下文)。然后父一级会调度安排的另一个dhaga准备运行。RPC调用将传递给tornado web服务器异步写入Socket,然后在其返回时注册一个回调,当这个RPC返回时,正在等待的dhaga将被添加到可运行队列中,然后后被父线程拾起。(banq注:类似node.js原理) 我们可以使用Dhaga代替线程

    03

    02 | Tornado源码全貌:上帝视角看Tornado

    正文共:1610 字 8 图 预计阅读时间:5 分钟 本篇主要从宏观的角度来为大家呈现 Tornado 源码的全貌,从上帝视角来感受一下源码的组织结构。 有人说学技术不就是coding,conding,coding ...... 这种学习方式只见树木不见森林,没有宏观的概念,当与别人聊起的时候都是说的各种细节,不能站在更高的角度来认识和思考这们技术,so还是希望大家学习东西的时候可以: 了解背景(这项技术什么背景下提出的)-->整体把握(这项技术是解决什么问题的?有哪些技术亮点?可能带来什么新的问题?)-->写demo运行(可以了解技术架构,代码组成等)-->找自己感兴趣的点研究(一个大项目的源码很多少则几千行多则几万行甚至几十万行)-->工作中使用体会(在读源码)...... 首先,我们感受一下源码的包中有哪些东西(这个是Tornado3.1.1版本):

    02
    领券